Chapter 3 :

How do we assemble genomes ?

Bioinformatics Algorithms,
Phillip Compeau & Pavel Pevzner

MODU PLS1 - Python for life science 1

Lauriane GRASS
Valentin GOUPILLE
Abdelhakim BOUAZZAOUI

M2 Bioinformatics

Introduction

Probleme : Assemblage de novo, des reads au génome

Contexte :

e Séquencage de novo : lecture d'un génome (inconnu)
e Technologies actuelles : lectures courtes (reads) fragmentées
o Défi : reconstituer la séquence originale compléte

Le défi de I'assemblage :

o Fragments de taille limitée (150 bp)
e Chevauchements multiples a identifier

But : obtenir une chaine génome telle que

Tous les reads doivent faire partie de cette chaine
Ce génome doit étre le plus “petit possible”

Introduction

Approche par k-mers

Les k-mers, c'est quoi ?

e Deécoupage des reads en morceaux de taille fixe k
o Exemple : pour k=3

o Read "ATGGCT" — k-mers : "ATG", "TGG", "GGC", "GCT" aTe
util TEIE
Pourquoi utiliser des k-mers ?
GGC
e Tous les fragments font la méme taille GCT

e Plus facile d'identifier les connexions
e Trés adaptés pour construire un graphe !

Le choix de k est important :

o Kk petit = trop de connexions possibles
e k grand = connexions manquantes

Script 1

def Compositionk(Text, k):
"""Generate the k-mer composition of a string.
Text: A string.
k: An integer."""
kmers = []
for i in range(len(Text) - k + 1):

kmers.append(Text[i : i + k])

return "\n".join((kmers))

Text = "CAATCCAAC"

k=5

print(Compositionk(Text, k))
v/ 0.0s

CAATC
AATCC
ATCCA
TCCAA
CCAAC

def genome_path_string(kmers):
"""Reconstruct a string from its genome path.

Input: list form : A sequence path of k-mers Patternl, ..,
Patternn such that the last k - 1 symbols of Patterni
are equal to the first k-1 symbols of Patterni+l for 1 = i < n-1.
Output: A string Text of length k+n-1 such that the i-th k-mer in Text is equal to Patterni (for 1 = i = n).

genome_string = kmers[0]

for kmer in kmers[1:]:
genome_string += kmer[-1]

return genome_string

list_kmers =
"ACCGA",
"CCGAA",
"CGAAG",
"GAAGC",
"AAGCT",

]
result = genome_path_string(list_kmers)
pprint.pp(result)

v/ 0.0s

f Overlap(Patterns):
"""Construct the overlap graph of a collection of k-mers.

:param Patterns: A collection Patterns of k-mers.
:return: The overlap graph Overlap(Patterns), in the form of an adjacency list.

adj_list = {}

Prefix(Pattern): for i, Pattern in enumerate(Patterns):
'"“Returns the prefix of a k-mer"""
return Pattern[:-1]

for j, Pattern_prime in enumerate(Patterns):
f Suffix(Pattern):
"""Returns the suffix of a k-mer"""
return Pattern[1:]
if i == j:

continue
if Suffix(Pattern) == Prefix(Pattern_prime):
if Pattern not in adj_list:

préfixe adj_list[Pattern] = []
suffixe adj_list[Pattern].append(Pattern_prime)

return adj_list

testseq = ["ATGCG", "GCATG", "CATGC", "AGGCA", "GGCAT"]
pprint.pp (Overlap (testseq)) Networkx
v/ 0.0s

{'GCATG': ['CATGC'], 'CATGC': ['ATGCG'], 'AGGCA': ['GGCAT'], 'GGCAT': ['GCATG'I]}

Introduction

Modélisation du probléeme : intérét des graphes

Graphe dirigé :

Chaque k-mer définit une connexion dirigée g e N
o Préfixe — Suffixe !
o Exemple : pour "®eq)" : Préfixe "CG" — Suffixe "GT" \

Nceuds = préfixes/suffixes de taille k-1
Arétes = k-mers complets
Direction = ordre de succession dans la séquence ~ Y syl ‘{

I' ATG GCGTGCA

Parcourir chaque k-mer une fois ~ i
— Reconstruction de la séquence originale !

def CompositionGraph(Patterns):

SC” t 5 * Constructs the CompositionGraph of the collection of k-mers Patterns.
F) :param Patterns: A collection of k-mers.

:return: The composition graph CompositionGraph(Patterns),
in the form of a tuple containing (Prefixes, Suffixes).

edges = []

for kmer in Patterns:
prefix = Prefix(kmer)
suffix = Suffix(kmer)
edges.append((prefix, suffix))

return edges

listKmer = ["GAGG", "CAGG", "GGGG", "GGGA", "CAGG", "AGGG", "GGAG"]
pprint.pp(CompositionGraph(listKmer))

listkmer = ["GAGG", "CAGG", "GGGG", "GGGA", "CAGG", "AGGG", "GGAG"]
pprint.pp(CompositionGraph(listKmer))

v 0.0s
. * L('GAG', 'AGG'),
Crl (LCAGS N AGGY):
('GGG', 'GGG'),

('GGG', 'GGA'),
('CAG', 'AGG'),
('AGG', 'GGG'),
('GGA', 'GAG')]

def DeBruijn(Patterns):
Constructs the de Bruijn graph of a collection of k-mers Patterns.
:param Patterns: A collection of k-mers.
:return: The de Bruijn graph DeBruijn(Patterns), in the form of an adjacency list.

edges = CompositionGraph(Patterns)
. print("The De Bruijn graph of the given k-mers is:")
adj_list = {} pprint.pp(DeBruijn(listKmer))

for edge in edges: v 0.0s

i . The De Bruijn graph of the given k-mers is:
prefix, suffix = edge {'AGG': ['GGG'],
'"CAG': ['AGG', 'AGG'],
'GAG': ['AGG'I,
'"GGA': ['GAG'],
'GGG': ['GGA', 'GGG']}

if prefix in adj_list:

adj_list[prefix].append(suffix)

adj_list[prefix] = [suffix]

sorted_adj_list = {k: sorted(v) for k, v in sorted(adj_list.items())}
return sorted_adj_list

Cycle eulérien

Eulerian Cycle Problem

A cycle that traverses each edge of a graph exactly once is called an Eulerian cycle,
and we say that a graph containing such a cycle is Eulerian.

The following algorithm constructs an Eulerian cycle in an arbitrary directed graph.

EULERIANCYCLE(Graph)
form a cycle Cycle by randomly walking in Graph (don't visit the same edge twice!)
while there are unexplored edges in Graph
select a node newStart in Cycle with still unexplored edges
form Cycle’ by traversing Cycle (starting at newStart) and then randomly walking
Cycle « Cycle’
return Cycle

def (Graph):
Finds an Eulerian cycle in a graph.
param Graph: An Eulerian directed graph, in the form of an adjacency list.
return: A list representing an Eulerian cycle in this graph.

Initialize the cycle with any node from the graph. Here, we choose the first node in the keys of the adjacency 1
cycle = [(Graph. ())[e]]
Main loop that continues as long as there are edges in the graph to add to the cycle.
while (Graph) > 0:
When the current cycle is "closed" (the first and last nodes are the same),
check if this cycle contains a node with any unexplored edges.
if cyclelo] cycle[-1]:
As long as the first node of the cycle has no unexplored edges, rotate the cycle.
This means removing the first element of the cycle and appending it at the end.

=
n

while cycle[0] Graph:
cycle. (0) # Remove the first node from the cycle.
cycle. (cyclelo])
Append this node at the end to "rotate" the cycle.
The last node of the current cycle becomes the new "starting point" or source to continue the traversal.
source = cycle[-1]
Take one of the neighbors (or targets) of the current node in the graph (chosen randomly) and add it to the cycle.
cycle. (Graph[source]. ()

If the source node has no more neighbors (all its edges have been traversed), remove it from the graph. (clean up empty dic
if (Graph[source]) 0: # If the node has no more neighbors

del Graph[source] # delete the node from the graph
(cycle) # Return the Eulerian cycle as a string

t entries of graph)

Algorithme
général

Graphe = dictionnaire
d'adjacence Python

Nceuds et arétes
représentant les k-mers

Consommation des arétes
durant le parcours

Construction du cycle par
progression itérative depuis
un noeud initial.

Gestion des sous-cycles

Cycle eulérien

Définition de la fonction et initialisation

EulerianCycle(Graph):

Finds an Eulerian cycle in a graph.

Graph: An Eulerian directed graph, in the form of an adjacency list.
Return: A list representing an Eulerian cycle in this graph.

nin

Data structure : dictionnaire d'adjacence
Graph = {

SAT =BT T G

'TG': ['GC', 'GT'],

STEE [CG!]

};

Initialize the cycle with any node from the graph. Here, we choose the first node in the keys of the adjacency list
cycle = [(Graph. ())[o]]

Structure de données = graphe représenté par une liste d’adjacence (dictionnaire Python tel que clés = nceuds
(préfixes) et valeurs = liste des nceuds accessibles (suffixes))

Exemple: ici a l'initialisation, I'output de cycle = ['AT']

Cycle eulérien

Boucle principale

Initialize the cycle with any node from the graph. Here, we choose the first node in the keys of the adjacency list
cycle = [(Graph. ())I[o]ll]

Main loop that continues as long as there are edges in the graph to add to the cycle.
while (Graph) > 0:

The last node of the current cycle becomes the new "starting point" or source to continue the traversal.
source = cycle[-1]

Take one of the neighbors (or targets) of the current node in the graph (chosen randomly) and add it to the cycle.
cycle. (Graph [source]. ()

If the source node has no more neighbors (all its edges have been traversed), remove it from the graph. (clean up empty
if (Graph[source]) == @: # If the node has no more neighbors
del Graph[source] # delete the node from the graph

Par itération :

Partir du dernier nosud visité
Choisir une aréte non visitée

la supprimer simultanément du graphe

— progression jusqu’a un graphe vide

Cycle eulérien

Cycles fermés

When the current cycle is "closed" (the first and last nodes are equal),
check if this cycle contains a node with any unexplored edges.
if cycle[@] == cycle[-1]:

As long as the first node of the cycle has no unexplored edges, rotate the cycle.
This means removing the first element of the cycle and appending it at the end.

while cycle[@] not in Graph:
cycle. (0) # Remove the first node from the cycle.
cycle. (cycle[@]) # Append this node at the end to "rotate" the cycle.

Graphe = { @—<+ .
O Yz, !
O:ab :

cycle = [@]

13

eulerien cycle

W

cca

Ter

De Bruijn Graph for TAATGCCATGGGATGTT with k=4

caT

g
66 .

st

GAT

=
a GGA

AT

s

v def StringReconstruction(filename):
Patterns = read_kmers_from_file(filename)

dB = DeBruijn(Patterns)

path = EulerianPath(dB)
Text = PathToGenome(path)
return Text

25
GTATAACGCGGTTACCGTAAAGACA

TAATTCAAATTAAAAAACTCCAACA [*GGCATAGGCTCGTCCTCTCATCAC' ,
CAGGTAGAATCCAGCGGAGACCTTT ' GCATAGGCTCGTCCTCTCATCACT
222222;???¢2?2€22??:5‘T\2ﬁi [('GTATAACGCGGTTACCGTAAAGAC', 'TATAACGCGGTTACCGTAAAGACA' z AGGCTCGTCCTCTCATCACTG',
ey D e
CAGCTGEGTANTGGGTGCCATAMT *AGACAGTGAMCAGA o ('AGA(A(TGAAA&ASAACGGTCA(A‘ ‘CA(AGTGAAACAS;«A(GGTCAGA(‘ . 7 5] . G (T
TGGATACGAACCGATCAAAGATTCT - e N i i N N ; A . A : ' AGGCTCGTCCTCTCATCACTGGTT ",

('GAAGGGACTATGCCCGCCTCCTGA', 'AAGGGACTATGCCCGCCTCCTGAA!
TCGGCGGGTGACACCAAGTACTAGC ' '
('CCAACTAGGTCCACCTTGCGCGGA", 'CAACTAGGTCCACCTTGCGCGGAA' GGCTCGTCCTCTCATCACTGGTTT®,

('CAGCTGGGTAATGGGTGCCATAAA', 'AGCTGGGTAATGGGTGCCATAAAT' 5 ; X el 'GCTCGTCCTCTCATCACTGGTTTC
('TGGATACGAACCGATCAAAGATTC', 'GGATACGAACCGATCAAAGATTCT'), A e ' = ' 'CTCGTCCTCTCATCACTGGTTTCT

AAAGACAGTGAAACAGAACGGTCAG ('TCGGCGGGTGACACCAAGTACTAG', 'CGGCGGGTGACACCAAGTACTAGC' * AAAAC CTAC z ' TCGTCCTCTCATCACTGGTTTCTG

AGGTGTTCTTGCAATCAGTTTTTCT 'TAC G G C ('CTCGCCGGCATATCAGACCTATCG', 'TCGCCGGCATATCAGACCTATCGT'), ' AAAAC 4 c 'CGTCCTCTCATCACTGGTTTCTGG"

CCATATGCCCGCACGCGAAAACGTT ' c C ('TACGTGCGGCCGCGATAATTCAAA', *ACGTGCGGCCGCGATAATTCAAAT' LR e GTGAGC 1, | GTCCTCTCATCACTGGTTTCTGGA"
TGAGTGCAAAATTAGACTATCGGCA * ARAGACAGTGAAACA (' AAGATTCTGCTCACCCCATCTCGG!, *AGATTCTGCTCACCCCATCTCGGG' e b A oo & oy
GTTATTTATGCGCTTGTGGCTCCTA ' AGGTGTTCTTGCAAT C (' AAAGACAGTGAAACAGAACGGTCA', 'AAGACAGTGAAACAGAACGGTCAG' B e
GGAATCAGGTGTTCTTGCAATCAGT (*AGGTGTTCTTGCAATCAGTTTTTC!, *GGTGTTCTTGCAATCAGTTTTTCT' ; !
CAATATGCCATAAGGAATCCAACTG ' ! (' CCATATGCCCGCACGCGAAAACGT', ' CATATGCCCGCACGCGAAAACGTT CTCTCATCACTGGTTTCTGGATGT
GGCCAACTAGGTCCACCTTGCGCGG e FEEUEALY (' TGAGTGCAAAATTAGACTATCGGC', 'GAGTGCAAAATTAGACTATCGGCA' 5 ey ' TCTCATCACTGGTTTCTGGATGTT
TACAGACATCGCATTTCATGAGAGG ; - cn ('GTTATTTATGCGCTTGTGGCTCCT', *TTATTTATGCGCTTGTGGCTCCTA' Lo N X 'CTCATCACTGGTTTCTGGATGTTG"
CCTCCTGAACTATGTGGCAATGCCA . o (' GGAATCAGGTGTTCTTGCAATCAG' , *GAATCAGGTGTTCTTGCAATCAGT' ¥ g B 'TCATCACTGGTTTCTGGATGTTGC"
TTCCTCTTTTATATAGTACCAGATT . G c (" CAATATGCCATAAGGAATCCAACT® , *AATATGCCATAAGGAATCCAACTG' . c . ' CATCACTGGTTTCTGGATGTTGC
AACAGTCAGGAGATGGGGTTAATCA CTCCTGAACTATGTGGCAATGCC. ('GGCCAACTAGGTCCACCTTGCGCG', 'GCCAACTAGGTCCACCTTGCGCGG'), 0 GGCTCA! | ATCACTGGTTTCTGGATGTTGCTA
TTGCCAGCATTCGTGA! e *TTCCTCTTTTATATAGTACCAGAT (' TACAGACATCGCATTTCATGAGAG' , *ACAGACATCGCATTTCATGAGAGG' ' : AR
AAAAGACACAAGCCATCAACC G 9 2 (' CCTCCTGAACTATGTGGCAATGCC! , ' CTCCTGAACTATGTGGCAATGCCA'), ’ TR
AAACTCTAGGAAGAGTCTCCGGTTA ' GCATTCGTG GCAGG', ('TTCCTCTTTTATATAGTACCAGAT*, *TCCTCTTTTATATAGTACCAGATT' ,
CCTATAAAACAAAATCCGGGAGAGC (' AACAGTCAGGAGATGGGGTTAATC, *ACAGTCAGGAGATGGGGTTAATCA' T
GCCGCAATGTAATTTCAGTTCCCGA (' TTGCCAGCATTCGTGACCGAGCAG' , ' TGCCAGCATTCGTGACCGAGCAGG' ' CTGGTTTCTGGATGTTGCTATCTA
'TGGTTTCTGGATGTTGCTATCT.

'GGCATAGGCTCGTCCTCTCATCACTGGTTTCTGGATGTTGCTATCTACTCATTTTGTTGTGGCTCAGCCTACTTTGCCGCAATGTAATTTCAGTTCCCGATCCAGCTGGGTAATGGGTGCCATAAATTTCCAACCAACACTTGGGCACGGCGGCAG
TCTCGGAGAAGCCTACGAAACATCCATCTGCACCGGTGTAAGGGCAAGCCTGAGTGCAAAATTAGACTATCGGCAAGCAATAATTAAGACTTTCGCAAGGCATGAGGGAGTCTATTGGATTTCCCTGTATCGTATTCTAGGACGATTTACGGATTC
ATACGACATTTCCACTGACTGAAGCTCAGTACAGGTCGCGTCCTACAATCTAACCAATGGTAGGGCATATCTAAATTTGCTGCATAAAACCTTCCTCTTTTATATAGTACCAGATTATGATTAAGGCTCCGCTACCCGCCTCTGTTATTTATGCGCTT
GTGGCTCCTAGGAACAGTCAGGAGATGGGGTTAATCACGTGTGACTCGCCGAGGTGAAATAGCGCACCTATTTCATGTCTGCTGACTCTGGTGTGGTACTCAATACGTTATGCCAATTGCATCCTCCGACGACGTTAGTAGAATAACTCAATTTGT
GAACAGTAATCAGGTCTAAACAAGGCCTGTGATCCTCCCATAAGTGGTCCGGGAAGTGCTCTGTCCGACCTTGCTCAATATCACCACGCAATATGCCATAAGGAATCCAACTGGGACCTGGCACGCCTCGCCGGCATATCAGACCTATCGTCGCG
TTCCTATAAAACAAAATCCGGGAGAGCGGGGCTAACGCGCACTCAAAAAGACACAAGCCATCAACCCCTGATTTACGAGCGCGATGCTCCCTCGCCCATCCAAGCGCACCAGAGGATACGGGACTCCATCTTAAAGCCAGAAGGGCGACTGCAC
CGGCCCCAGTACGGTGAAAACAGCGGCCAACTAGGTCCACCTTGCGCGGAATCCGGCGGACAGGTGAATACGTGCGGCCGCGATAATTCAAATTAAAAAACTCCAACAGTACTCAAGACCCGTCATCTTTAAGAAACGAAGCCGACCTTTTGCCT
AGTCGCTCAGTGAGGACTAGGGTTATTGTCTTATGGTTCACCAAGCCTTGCAATGTATCCTCTCCGTTGCGCTGTGGTCAGATGACGAAGAACAGGTAGAATCCAGCGGAGACCTTTACACGTAGAAGCAAAAAACCGATACTTCTAATGTGAAGC
TACACAAGACGGATAGTTTACGGATAAGTACCTATCGTTATTCATCATCTACGCAACCCACGCTGCGCCGCTGACACTGAGTTACTTATGACGTCTTCGGGGTGAAAACTCTAGGAAGAGTCTCCGGTTAGCCATCTGCCCCATCAGGTTAATGTG
AAGACTTGGCGCTCGGAATCAGGTGTTCTTGCAATCAGTTTTTCTCGGGTGCGATTAAAGTCCAGAGGTCTTTGGGAATGTGACCAAAGATTGCGTTACTGCTATTTCGCGTTGTCCAATGGTAGATACCTTGCCAGCATTCGTGACCGAGCAGGC
CTGTTGACGAGGCTGGTTTACGAGGATCAATCGATACCATATGCCCGCACGCGAAAACGTTATTCTAGTAATGAGGGTTAGAGACCGGAAGGGACTATGCCCGCCTCCTGAACTATGTGGCAATGCCATCAAATGCTACTGCCAGTCCCGATCTT
TGGAAGTGGGTCCACACCTACAGACATCGCATTTCATGAGAGGGCTGGGGCAGGGTTGGATACGAACCGATCAAAGATTCTGCTCACCCCATCTCGGGGCTACGGTGTATGAACATGTGTCGTAAGCTCAGGCGTTGCTCATTTTGTCCTTTAAG
GTTACTGGAGGACTTTCGCGTATAACGCGGTTACCGTAAAGACAGTGAAACAGAACGGTCAGAGGCGGCTCAACGAGTACCTTGGGCTCGCGGGCACTATCCCCTGATTATTCTCATGATGTCATCTTCTGTTCGCTATAACTGTCGGAGTATCAT
GTCAACGCAGTAATCAGCTCTAAAAACACCCTCGGCCTGAAAACAGAGCTGATGTTTCTACGAGAGATGGTACATCCTAGAGGGCCCGGACAACTACATCTCACGGTAGTATGTGCTTCGGCGGGTGACACCAAGTACTAGCCAAATGTTCGAAC
GTGCGACAGGCTCTGTCTAGGCACCTCGCGTGCTATAGCTAGTCAAGGCAAGCCTCGAGTG'

https://alexeidrummond.org/bayesian phylo lectures/lectureGenomeAssembly/?p
rint-pdf#/

git@github.com:hakimGMO/Team-PLS-Genome-Assembly.git

https://www.bioinformaticsalgorithms.org/bioinformatics-chapter-3

https://alexeidrummond.org/bayesian_phylo_lectures/lectureGenomeAssembly/?print-pdf#/
https://alexeidrummond.org/bayesian_phylo_lectures/lectureGenomeAssembly/?print-pdf#/
mailto:git@github.com
https://www.bioinformaticsalgorithms.org/bioinformatics-chapter-3

def PathGraphk(Text, k):

Generate the nodes and edges of the path graph from a genome Text.

.
Scrl pt 4 PathGraphk(Text) is the path consisting of |Text| - k + 1 edges,

where the i-th edge of this path is labeled by the i-th k-mer in Text and the i-th node of
the path is labeled by the i-th (k - 1)-mer in Text.

:param Text: A string representing the genome.
:param k: An integer representing the length of k-mers.

:return: A tuple containing two lists:

- nodes: A list of (k-1)-mers representing the nodes of the path graph.
— edges: A list of k-mers representing the edges of the path graph.

nodes = []

edges = []

for 1 in range(len(Text) - k + 1)
nodes.append(Text[i : i + k - 1])
edges.append(Text[i : i + k])

return nodes, edges

k1l = 4
textl = “AAGATTCTCTAC"

pprint.pp(PathGraphk(textl, k1))
v/ 0.0s

(AIEEAAG PR AGA LI GATE R P ATIR VARSI C AU TCTRE A TG S AT C TR G AR
['AAGA', 'AGAT', 'GATT', 'ATTC', 'TTCT', 'TCTC', ‘'CTCT', ' A', 'CTAC'])

def DeBruijnk(Text, k):

Generate the adjacency list of the de Bruijn graph from a genome Text.

The de Bruijn graph DeBruijnk(Text) is formed by gluing identically labeled nodes in PathGraphk(Text).

:param Text: A string representing the genome.
:param k: An integer representing the length of k-mers.

:return: A dictionary representing the adjacency list of the de Bruijn graph. result — DeB ruij nk(textl’ kl)
pprint.pp(result)

edges = PathGraphk(Text, k)
v/ 0.0s
adj_list = {}
{'AAG'
for i in range(len(edges[1])): 'AGA'

edge = edges[1][i]

'GAT'
'ATT'
5 il &

[1
if prefix not in adj_list: TCT
adj_listlprefix] = [] LGTES

‘CTA'

prefix = edgel: k - 1]

suffix = edge[1:]

adj_list[prefix].append(suffix)

return adj_list

