
MODU PLS1 - Python for life science 1

Lauriane GRASS
Valentin GOUPILLE

Abdelhakim BOUAZZAOUI

M2 Bioinformatics

Bioinformatics Algorithms,
Phillip Compeau & Pavel Pevzner

Chapter 3 :

How do we assemble genomes ?

Introduction

2

Problème : Assemblage de novo, des reads au génome
Contexte :

● Séquençage de novo : lecture d'un génome (inconnu)
● Technologies actuelles : lectures courtes (reads) fragmentées
● Défi : reconstituer la séquence originale complète

Le défi de l'assemblage :

● Fragments de taille limitée (150 bp)
● Chevauchements multiples à identifier

But : obtenir une chaîne génome telle que

● Tous les reads doivent faire partie de cette chaîne
● Ce génome doit être le plus “petit possible”

Introduction

3

Approche par k-mers
Les k-mers, c'est quoi ?

● Découpage des reads en morceaux de taille fixe k
● Exemple : pour k=3

○ Read "ATGGCT" → k-mers : "ATG", "TGG", "GGC", "GCT"

Pourquoi utiliser des k-mers ?

● Tous les fragments font la même taille
● Plus facile d'identifier les connexions
● Très adaptés pour construire un graphe !

Le choix de k est important :

● k petit = trop de connexions possibles
● k grand = connexions manquantes

A T G G C T
A T G
 T G G
 G G C
 G C T

Script 1

Script 2 *

Script 3

Networkx

préfixe

suffixe

Introduction

7

Modélisation du problème : intérêt des graphes

Graphe dirigé :

● Chaque k-mer définit une connexion dirigée
○ Préfixe → Suffixe
○ Exemple : pour "CGT" : Préfixe "CG" → Suffixe "GT"

● Nœuds = préfixes/suffixes de taille k-1
● Arêtes = k-mers complets
● Direction = ordre de succession dans la séquence

But :

● Parcourir chaque k-mer une fois
● → Recherche d'un chemin eulérien
● → Reconstruction de la séquence originale !

alexeidrummond.org

Script 5 *

Script 5 *

Cycle eulérien

10

Algorithme
général
Graphe = dictionnaire
d'adjacence Python

Nœuds et arêtes
représentant les k-mers

Consommation des arêtes
durant le parcours

Construction du cycle par
progression itérative depuis
un noeud initial.

Gestion des sous-cycles

Cycle eulérien

11

Définition de la fonction et initialisation

Structure de données = graphe représenté par une liste d’adjacence (dictionnaire Python tel que clés = nœuds
(préfixes) et valeurs = liste des nœuds accessibles (suffixes))

Exemple: ici à l’initialisation, l’output de cycle = ['AT']

Cycle eulérien

12

Boucle principale

Par itération :

● Partir du dernier nœud visité
● Choisir une arête non visitée
● la supprimer simultanément du graphe

→ progression jusqu’à un graphe vide

Cycle eulérien

13

Cycles fermés

cycle = []

Graphe = { : xy,
: yz,
: ab

}

eulerien cycle

'GGCATAGGCTCGTCCTCTCATCACTGGTTTCTGGATGTTGCTATCTACTCATTTTGTTGTGGCTCAGCCTACTTTGCCGCAATGTAATTTCAGTTCCCGATCCAGCTGGGTAATGGGTGCCATAAATTTCCAACCAACACTTGGGCACGGCGGCAG
TCTCGGAGAAGCCTACGAAACATCCATCTGCACCGGTGTAAGGGCAAGCCTGAGTGCAAAATTAGACTATCGGCAAGCAATAATTAAGACTTTCGCAAGGCATGAGGGAGTCTATTGGATTTCCCTGTATCGTATTCTAGGACGATTTACGGATTC
ATACGACATTTCCACTGACTGAAGCTCAGTACAGGTCGCGTCCTACAATCTAACCAATGGTAGGGCATATCTAAATTTGCTGCATAAAACCTTCCTCTTTTATATAGTACCAGATTATGATTAAGGCTCCGCTACCCGCCTCTGTTATTTATGCGCTT
GTGGCTCCTAGGAACAGTCAGGAGATGGGGTTAATCACGTGTGACTCGCCGAGGTGAAATAGCGCACCTATTTCATGTCTGCTGACTCTGGTGTGGTACTCAATACGTTATGCCAATTGCATCCTCCGACGACGTTAGTAGAATAACTCAATTTGT
GAACAGTAATCAGGTCTAAACAAGGCCTGTGATCCTCCCATAAGTGGTCCGGGAAGTGCTCTGTCCGACCTTGCTCAATATCACCACGCAATATGCCATAAGGAATCCAACTGGGACCTGGCACGCCTCGCCGGCATATCAGACCTATCGTCGCG
TTCCTATAAAACAAAATCCGGGAGAGCGGGGCTAACGCGCACTCAAAAAGACACAAGCCATCAACCCCTGATTTACGAGCGCGATGCTCCCTCGCCCATCCAAGCGCACCAGAGGATACGGGACTCCATCTTAAAGCCAGAAGGGCGACTGCAC
CGGCCCCAGTACGGTGAAAACAGCGGCCAACTAGGTCCACCTTGCGCGGAATCCGGCGGACAGGTGAATACGTGCGGCCGCGATAATTCAAATTAAAAAACTCCAACAGTACTCAAGACCCGTCATCTTTAAGAAACGAAGCCGACCTTTTGCCT
AGTCGCTCAGTGAGGACTAGGGTTATTGTCTTATGGTTCACCAAGCCTTGCAATGTATCCTCTCCGTTGCGCTGTGGTCAGATGACGAAGAACAGGTAGAATCCAGCGGAGACCTTTACACGTAGAAGCAAAAAACCGATACTTCTAATGTGAAGC
TACACAAGACGGATAGTTTACGGATAAGTACCTATCGTTATTCATCATCTACGCAACCCACGCTGCGCCGCTGACACTGAGTTACTTATGACGTCTTCGGGGTGAAAACTCTAGGAAGAGTCTCCGGTTAGCCATCTGCCCCATCAGGTTAATGTG
AAGACTTGGCGCTCGGAATCAGGTGTTCTTGCAATCAGTTTTTCTCGGGTGCGATTAAAGTCCAGAGGTCTTTGGGAATGTGACCAAAGATTGCGTTACTGCTATTTCGCGTTGTCCAATGGTAGATACCTTGCCAGCATTCGTGACCGAGCAGGC
CTGTTGACGAGGCTGGTTTACGAGGATCAATCGATACCATATGCCCGCACGCGAAAACGTTATTCTAGTAATGAGGGTTAGAGACCGGAAGGGACTATGCCCGCCTCCTGAACTATGTGGCAATGCCATCAAATGCTACTGCCAGTCCCGATCTT
TGGAAGTGGGTCCACACCTACAGACATCGCATTTCATGAGAGGGCTGGGGCAGGGTTGGATACGAACCGATCAAAGATTCTGCTCACCCCATCTCGGGGCTACGGTGTATGAACATGTGTCGTAAGCTCAGGCGTTGCTCATTTTGTCCTTTAAG
GTTACTGGAGGACTTTCGCGTATAACGCGGTTACCGTAAAGACAGTGAAACAGAACGGTCAGAGGCGGCTCAACGAGTACCTTGGGCTCGCGGGCACTATCCCCTGATTATTCTCATGATGTCATCTTCTGTTCGCTATAACTGTCGGAGTATCAT
GTCAACGCAGTAATCAGCTCTAAAAACACCCTCGGCCTGAAAACAGAGCTGATGTTTCTACGAGAGATGGTACATCCTAGAGGGCCCGGACAACTACATCTCACGGTAGTATGTGCTTCGGCGGGTGACACCAAGTACTAGCCAAATGTTCGAAC
GTGCGACAGGCTCTGTCTAGGCACCTCGCGTGCTATAGCTAGTCAAGGCAAGCCTCGAGTG'

https://alexeidrummond.org/bayesian_phylo_lectures/lectureGenomeAssembly/?p
rint-pdf#/

git@github.com:hakimGMO/Team-PLS-Genome-Assembly.git

https://www.bioinformaticsalgorithms.org/bioinformatics-chapter-3

https://alexeidrummond.org/bayesian_phylo_lectures/lectureGenomeAssembly/?print-pdf#/
https://alexeidrummond.org/bayesian_phylo_lectures/lectureGenomeAssembly/?print-pdf#/
mailto:git@github.com
https://www.bioinformaticsalgorithms.org/bioinformatics-chapter-3

Script 4

Script 4
suite

