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Abstract

Study of Pseudomonas brassicacearum gene expression variation in environ-mental
constraints, towards the validation of Division Of Labor.

Division of labor (DOL) represents a fundamental biological strategy enhancing collective performance
through task specialization. While interspecific DOL is well-documented in microbial communities,
intraspecific DOL within clonal bacterial populations remains underexplored. This study investigated
whether genetically identical bacterial cells exhibit functional specialization under iron limitation,

using Pseudomonas brassicacearum R401 as a model system.

We employed microSPLIiT (microbial Split-Pool Ligation Transcriptomics) technology to perform
single-cell RNA sequencing on P brassicacearum R401 populations grown under contrasting iron
conditions: iron-limited (M9) and iron-replete (M9F) media. Bacterial cultures were sampled at

three timepoints with three biological replicates per condition, resulting in 18 experimental samples.

The microSPLIT methodology successfully generated high-quality single-cell transcriptomic data, with
85.58% of sequencing reads containing valid barcodes and detection of 6,035 genes (96.6% of the
annotated genome). Following quality control and filtering, we analyzed approximately 3,000 cells.
Principal component analysis revealed clear transcriptional distinctions between culture conditions,
with iron-limited cells at later timepoints showing reduced transcriptional activity and distinct gene

expression patterns.

Differential expression analysis identified genes associated with translational regulation, iron
metabolism, and stress response as key contributors to condition-specific programs. Cells under iron
limitation exhibited downregulation of ribosomal protein genes (e.g., RplA) and upregulation of
storage metabolism genes (e.g., phasin) and siderophore biosynthesis regulators, suggesting adaptive

metabolic reorganization under iron stress.

This study successfully established the technical foundation for bacterial single-cell transcriptomics

using microSPLiT. The methodological advances and initial transcriptomic insights provide a solid basis
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for future investigations of bacterial population heterogeneity and potential cellular specialization

under environmental constraints.
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Chapter 1

Introduction

1.1 Division of Labor: A Fundamental Biological Principle

The survival of organisms in evolving environments is driven by their fitness!, where the cost-benefit
ratio of traits is constantly balanced and gives rise to different populational evolutionary strategies. To
succeed, organisms must compete, cooperate, and/or specialize based on how well their traits enable
resource acquisition and utilization in their biotic and abiotic environment. Division of Labor (DoL)
represents one such strategy for resource use optimisation. Division of labour occurs when different
individuals, cells or tissues become specialised to perform complementary tasks that benefit the whole
organism or social group! and improves collective performance?. This fundamental principle operates
throughout biological systems, from molecular evolution where gene duplication enables enzyme
specialization, to multicellular organisms where cellular differentiation creates specialized tissues, to

eusocial insect societies with their reproductive and functional caste systems>.

Among the diverse biological systems where DoL operates, microbial communities provide particularly
compelling examples. Microbial communitie’s dynamics demonstrate how DoL can emerge even
among unicellular organisms, where individual cells can specialize in different metabolic functions
while cooperating for collective benefit. Giri and colleagues have attempted to define the concept of
Dol specifically within microbial communities, identifying key criteria that distinguish DoL from other
types of ecological interactions®. Microbial interactions can be classified based on their directionality
and the species involved. Interactions can be unidirectional or bidirectional, and can occur within
the same species (intraspecific) or between different species (interspecific). For an interaction to

qualify as Dol, it must involve reciprocal fitness benefits between partners, where both participants

IFitness refers to the ability of an organism to survive and reproduce in its environment, measured by its reproductive
success and contribution to future generations.
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gain from the interaction. DoL between microbial species has been well-characterized in various
ecosystems, with numerous examples of cross-feeding and mutualistic interactions documented in

the human gut microbiome and soil communities*.

1.2 Division of Labor in Root Microbiota

Building on this broader understanding of microbial DoL, the root microbiota represents a particularly
well-studied example of interspecific DoL>. Roots of plants host diverse bacteria that are collectively
referred to as the bacterial root microbiota. Unlike multicellular organisms that evolved diverse cell
types to achieve distinct biological functions and promote a division of labour, unicellular organisms
such as bacteria rely on limited metabolic specialisation possibilities as a unit. Indeed, recent
reports®’, indicate that metabolic interdependencies and cross-feeding exchanges are widespread
among taxonomically diverse bacteria and likely drive microbial co-existence within complex bacterial

communities®?.

While interspecific DoL has been extensively studied®, intraspecific DoL within clonal/isogenic?

bacterial populations remains less explored, despite its potential importance for understanding
population-level adaptation and functional diversity. The traditional view of biological populations
assumed that all individuals within a clonal population behave identically. However, evidence has
accumulated over decades showing that even genetically identical organisms can exhibit functional

heterogeneity, leading to population-level benefits through task specialization'°.

A major unsolved question is whether populations of genetically identical bacteria can minimise
energetically costly processes by each executing different metabolic tasks at the intra-population level.
Here, we hypothesise that metabolic cooperation within bacterial populations plays a key role in
modulating population dynamics, competitiveness, and persistence at the root—soil interface. This
hypothesis builds on the idea that bacteria are subject to stochastic, noisy gene expression'!~!3. In
such systems, not all individuals respond identically to environmental cues, leading to phenotypic
heterogeneity. This noise-driven diversity can be beneficial at the population level. The theory of Noise-
Averaging Cooperation (NAC)'# further proposes that metabolic noise—exacerbated by the small
size of bacteria—can constrain individual growth, but can be mitigated through metabolite sharing
among related cells. This “leaky function”, forming a “metabolic marketplace”, allows populations to
buffer stochastic fluctuations and improve collective fitness. In this context, cross-feeding interactions
may emerge as a result of gene expression variability and/or the selection of advantageous mutations,

fostering metabolic interdependencies within the population (see Figure 1.1).

2An isogenic population refers to a group of organisms that are genetically identical, derived from a single ancestral cell
or clone.
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Finally, environmental regulation also shapes this process: microenvironmental cues and spatial

10,15 “which, if consistently

heterogeneity can induce context-dependent gene expression patterns
beneficial, may become genetically encoded over evolutionary time. Altogether, these mechanisms
point toward an intra-population division of labour emerging from the interplay between gene

expression noise, environmental signals, and evolutionary selection.

Benefits of intraspecific functional variation Sources of intraspecific functional variation
A B c D
o o— TraaGtion
TITTII] Gene JIITIT
® ® TITIIN] o JIITIT
a
( - B~ e
o
non-synonymous mutation
Species A Species B Metabolite produced by sub-populaton 1 Costly metabolite beneficial to
b-nopulation 1 and used by sub-population 2 @ species A (exemple of antibiotic
@D s.>-population ] targeting species B)

Metabolite produced by sub-populaton 2
and used by sub-population 1

@ sub-population 2

Figure 1.1: Examples of benefits and sources of intraspecific division of labour between intra-populations
based on metabolic complementation and costly “common good” metabolite production.

From the left to the right, co-metabolism within an isogenic bacterial population (A) and production of
antimicrobials targeting other bacteria (B) can be considered as division of labour in a population. These
mechanisms of division of labour can be based on differential transcription between bacteria (C) within a

population and /or genetic variations between intra-populations (D).

1.3 PsR401: A Model System for Studying Intraspecific Dol

To investigate these theoretical frameworks of intraspecific DoL, we require a well-characterized
bacterial model system that exhibits the complex metabolic interactions described above. The
root environment provides an ideal context for studying such interactions, as successful bacterial
establishment at roots requires the coordination of multiple independent biological processes. These
include both host-microbe interactions (signal recognition, chemotaxis, surface attachment, biofilm
formation, virulence factors)'® and microbe-microbe interactions (production of antimicrobials or
public goods)'®. Given the energetic costs associated with simultaneously activating these diverse

processes, we postulate that cooperation between genetically identical strains is key for promoting

bacterial pervasiveness at roots.

Consistent with this hypothesis, the robust root coloniser Pseudomonas brassicacearum R401 (hereafter

referred to as PsR401) provides an excellent model system for studying intraspecific DoL. This
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bacterium deploys multiple independent strategies that co-function to promote colonisation and
persistence at roots'”. Unlike many pathogenic bacteria, PsSR401 lacks genes for a type III secretion

18,19 " Instead, this

system (T3SS) and does not overgrow or suppress plant immune responses
opportunistic pathogen?® of the plant model Arabidopsis thaliana acts as a potent antagonist that
relies on the combined action of three distinct exometabolites to suppress competitors and promote

root colonization.

The three key exometabolites produced by PsR401 each serve distinct but complementary functions.

First, this Gram-negative bacterium produces Brassicapeptin®®2!

, @ phytotoxin that promotes both
pathogenicity and root colonization in mono-association experiments with Arabidopsis thaliana.
Second, it synthesizes 2,4-diacetylphloroglucinol (DAPG)!”, an antimicrobial compound that directly
inhibits competing microbes. Third, it produces pyoverdine!”, a siderophore that chelates iron from

the environment—an essential but scarce micronutrient in the rhizosphere??.

The production of pyoverdine highlights the central role of iron availability in microbial interactions at
the root-soil interface. Iron functions as a major micronutrient that modulates strain competitiveness
and proliferation at roots>>4, In iron-limited environments, siderophore-mediated iron scavenging
confers a strong competitive advantage by depriving rival microbes of access to this vital resource.
This resource competition, especially for iron, represents a key mechanism of indirect microbial
antagonism. Beyond simply acquiring nutrients, microbes may also sequester them, preventing

uptake by others and modulating community composition and function?®.

@ Biological Hypothesis

Given that iron functions as a public good whose availability becomes rate-limiting in the
root compartment and that production of the above-mentioned processes are all modulated
by iron availability,?® we propose that division of labour (DoL) among genetically identical
PsR401 cells may be reinforced under iron-limiting conditions, such as those found in the
root habitat. In such scenarios, phenotypic heterogeneity—whether driven by gene expression
noise or environmentally induced regulation—could lead to subpopulations specialising in
complementary tasks, such as toxin production, antimicrobial defense, or siderophore-mediated

iron acquisition, thereby enhancing population-level fitness.
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1.4 Leveraging Single-Cell Transcriptomics to Study DoL

To test our biological hypothesis regarding intraspecific DoL in PsR401, we need to examine tran-
scriptional heterogeneity at the single-cell level. Traditionally, studies of bacterial gene expression
have relied on bulk RNA sequencing methods, which provide an average view of the transcriptome
across a population.?” However, these approaches mask the underlying cell-to-cell variability that is
critical for understanding complex bacterial behaviors and adaptations. The advent of single-cell RNA
sequencing (scRNA-seq) and now multi-omics technologies has provided unprecedented insights into
cellular heterogeneity across various biological systems8-3C. Although eukaryotic cells have benefited
from scRNA-seq technology since 2009, prokaryotic systems have faced significant implementation
delays owing to distinct technical obstacles. These challenges include low RNA content in individual
cells, the absence of poly-A tails on bacterial mRNAs, and diverse cell wall structures.?” These factors
necessitate the development of specialized techniques for efficient cell lysis, RNA extraction, and
mRNA enrichment in bacterial systems. Despite these challenges, recent years have seen significant
progress in developing and refining bacterial scRNA-seq methods?’>!. These methodological im-
provements have created novel opportunities to explore bacterial physiology, stress responses, and

population dynamics at single-cell resolution.

1.5 Research Objectives and Approach

1.5.1 Our Focus: microSPLIiT Technology

To address our biological hypothesis regarding intraspecific DoL in PsR401, we will leverage the
microSPLIiT (microbial Split-Pool Ligation Transcriptomics) technology>*32. This cutting-edge bacte-
rial scRNA-seq method enables high-throughput profiling of individual bacterial cells, providing the
resolution necessary to detect transcriptional heterogeneity within clonal populations. By analyzing
PsR401 cells under contrasting nutrient conditions—particularly iron-limited versus iron-replete
environments—we hope to identify potential subpopulations that specialize in different metabolic

tasks (see Figure 1.2).
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Figure 1.2: Hypothesis of DoL in PsR401 under iron-limiting conditions

Testing the division of labor hypothesis in PsR401 under two contrasting conditions: iron-limited and
iron-replete environments. Single-cell RNA sequencing (scRNA-seq) with microSPLiT will enable detection
of transcriptional heterogeneity within the population, revealing whether this specialization is driven by

noisy gene expression or environmentally induced metabolic specialization.

1.5.2 Internship Goals and Expected Outcomes

Building upon the theoretical framework of intraspecific division of labor and the biological char-
acteristics of PsR401, this internship aims to leverage cutting-edge single-cell transcriptomics to
investigate metabolic cooperation within clonal bacterial populations. The primary goal is to validate
the microSPLiT technology for bacterial systems while testing our hypothesis that iron limitation

promotes functional specialization among genetically identical cells.

Through systematic analysis of transcriptional heterogeneity under contrasting iron conditions in
culture medium, we expect to uncover whether PsR401 populations exhibit distinct subpopulations
with specialized metabolic functions or whether cooperation emerges through noisy gene expression
regulation across the population. By examining temporal dynamics of gene expression patterns,

we will gain insights into how these cooperative behaviors evolve and stabilize over time. This
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investigation will provide critical insights into the mechanisms underlying population-level adaptation

and resilience, particularly in the context of fluctuating iron availability.

The expected outcomes of this research extend beyond understanding PsR401 biology. Ultimately,
this project will advance our understanding of how phenotypic diversity among clonal bacterial
populations facilitates ecological success and resilience during root colonization, while establishing
methodological foundations for future studies of bacterial population dynamics at single-cell resolution.
By establishing robust methodologies for bacterial single-cell transcriptomics, this work will contribute

to the broader field of microbial population dynamics.




Chapter 2

Materials and Methods

2.1 Bacterial culture

Start culture
P. brassicacearum PR401

in petri dish

transfer to liquid medium

0D:T1,T2, T3

0D:T1,T2,T3

0D:T1,T2,T3

0D:T1,T2,T3

0D:T1,T2,T3

0D:T1,T2, T3

Figure 2.1: Experimental design for bacterial culture

The workflow illustrates the P brassicacearum R401 cells preparation in two different media: i) a first
stringent medium (M9) with low glucose availability and no iron supplementation) and ii) a less stressful
medium (M9F) with regular glucose and iron supplementation. Each medium condition was replicated
three times (Rep A, B, C) and bacterial growth was monitored regularly via optical density measured at
600nm. Bacterial cells were sampled three specific timepoints (T1, T2, T3) for each medium. This design
resulted in 18 samples (2 media X 3 biological replicates X 3 timepoints) for subsequent single-cell

RNA-seq library preparation and analysis.
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An isogenic population of P brassicacearum R401 was initially cultured in a rich medium (Tryptone
Soy Broth; “TSB”) before being transferred to different liquid media to investigate the effects of

nutrient availability on bacterial growth and gene expression(Figure 2.1).

Two distinct culture conditions were applied to the bacteria:a stringent medium containing low
glucose and no iron supplementation (M9), and a medium containing regular glucose concentration
(20 mM) and high FeCl3 concentrations (100 pM) (see Table A.1 for detailed concentrations). Each
condition was replicated three times to ensure statistical robustness of the experimental results. The
bacterial growth was monitored by measuring optical density (OD600nm) at regular intervals. The
growth curves obtained from these measurements are presented (Figure 2.2). This experimental
design resulted in a total of 18 cell samples: 2 media types X 3 biological replicates X 3 time points,
providing comprehensive coverage of the growth dynamics under different nutrient conditions.

Evolution of OD over Time by Condition

Condition
r— —e— MOF_A

16 *- § Vo B
. —e— MOF_C

—e— M9_A
—e— M9_B

144 —e— M9_C

124

1.0

oD

0.8 4

0.6 4

0.4 4

0.2 4

15 20 25 30 35 40 a5 50
Incubation Time (hours)

Figure 2.2: Bacterial growth dynamics of P. brassicacearum R401 populations measured by optical
density (OD600) cultured under two different nutrient conditions: M9 (low glucose /iron)
and MYF (high glucose /iron).

Measurements were taken at three timepoints (T1, T2, T3) for three biological replicates (Rep A, B, C)
for both culture media (M9 and M9F). T1 timepoints are identical for both conditions, while T2 and T3

timepoints differ between M9 and M9F culture conditions.

The growth curves reveal distinct patterns between the two culture conditions. Both M9 and M9F
cultures were sampled at the same initial timepoint (T1), showing similar optical densities (OD
0.13-0.21). However, subsequent sampling timepoints (T2 and T3) were selected based on the
specific growth dynamics of each condition. M9F cultures exhibited significantly higher growth rates
and reached higher optical densities (OD 0.59-0.63 at T2, 0.74-0.83 at T3), while M9 cultures showed
limited growth with lower densities (OD 0.28-0.33 at T2, 0.26 at T3). The different timepoints

9
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reflect the distinct growth kinetics: M9F cultures showed continued active growth from T2 to T3,
maintaining exponential growth phase, while M9 cultures reached a growth plateau by T2, suggesting
nutrient limitation in the M9 condition. Biological replicates showed consistent results, validating
the reproducibility of this growth pattern.Cells were collected at each timepoint (T1, T2, T3) from
all biological replicates for subsequent single-cell RNA-seq library preparation using the Microbial

split-pool ligation transcriptomics (microSPLiT) protocol®%33.

2.2 microSPLIT protocol

MicroSPLiT3233 is a high-throughput single-cell RNA sequencing plate-based method for bacteria,
allowing the profiling of hundreds of thousands of cells’ transcriptional states per experiment without
the need for specialized equipment?”-33. Unlike other single-cell RNA-seq approaches that require
physical isolation of individual cells (e.g., droplet-based methods), microSPLIiT uses a split-pool

barcoding strategy to uniquely label transcripts within each cell.

@ Information

The microSPLIT strategy will not be described in detail here; for more information, see Gaisser
protocol.3. Only the key steps necessary for a general understanding of the method are

presented below.

10
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Figure 2.3: MicroSPLiT in-cell cDNA barcoding scheme (from Gaisser et al. 2024)%3

a, Bacterial cells are fixed overnight and permeabilized before the mRNA is preferentially polyadenylated.
After mRNA enrichment, cells may contain both polyadenylated and non-polyadenylated mRNA. b, Cells
are distributed into the first barcoding plate, and the mRNA is reverse transcribed by using a mixture
of poly-dT and random hexamer primers carrying a barcode (barcode 1, BC1) and a 5’ phosphate for
future ligation at their 5’ end. After the barcoding reaction, cells are pooled together and split again
into the second barcoded plate. c, Ligation adds a 5’ phosphorylated barcode 2 (BC2) to BC1 with a
linker strand. A blocking solution is then added to each of the wells of the second plate, preventing any
unreacted BC2 from future ligation. Cells are pooled and split into the third and final barcoded plate. d,
A second ligation step adds barcode 3 (BC3) with another linker strand. BC3 also contains a 5’ biotin,
a primer binding site and a unique molecular identifier (UMI). A blocking solution for the R3 linker is
added to each of the wells in the plate before the final pooling of cells. This results in uniquely barcoded
cells that can be distributed in aliquots into sub-libraries and stored until future use or used immediately

for library preparation. (R1, round 1; R2, round 2; R3, round 3)%°.

11
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2.2.1 Fixation and permeabilization

The first step is fixation of the bacterial suspension with formaldehyde Figure 2.3 immediately after
sampling the 18 conditions Figure 2.1. This preserves the transcriptomic state and cross-links RNA
to proteins, preventing leakage of each cell’s transcriptome. Next, cells are permeabilized using
mild detergent and lysozyme, allowing enzymes and oligonucleotides to access intracellular RNA for

barcoding.

1 Note

Adequate permeabilization is essential for efficient barcoding, but over-permeabilization can
compromise cell integrity. For successful single-cell resolution, cells must remain intact after

permeabilization to allow multiple split-pool steps and retain cross-linked RNA. Figure 2.3

2.2.2 mRNA enrichment

After permeabilization, the transcripts in the fixed and permeabilized cells undergo in situ polyadeny-
lation with the addition of a poly(A) polymerase (PAP) and ATP This step enriches for mRNA in the
total barcoded RNA pool because, under these conditions, PAP preferentially polyadenylates mRNA

as opposed to ribosomal RNA (rRNA) Figure 2.3.

2.2.3 Barcoding
The protocol utilizes several rounds of split-pool barcoding where cells are distributed into 96-
well plates, barcoded, pooled, and redistributed for subsequent rounds, creating unique barcode

combinations that identify individual cells.

Barcoding round 1 (R1) to identify the condition and the technical replicate

Each of the 18 samples is split into 5 technical replicates for barcoding, and distributed into individual
wells of a 96-well plate containing uniquely barcoded oligos Figure 2.3. In each well, mRNA is reverse
transcribed into ¢cDNA using a mix of poly(T) and random hexamer oligos with the same barcode. The
oligos used in each well contain either a dT15 sequence to capture polyadenylated mRNA previously
enriched or six random nucleotides to bind any RNA, followed by a universal sequence for subsequent
ligation steps. All cells in the same well receive the same unique barcode during reverse transcription,

which allows sample identification based on the first barcode.

Barcoding rounds 2 (R2) and 3 (R3) for unique cell and transcript identification

Cells are then pooled, washed and randomly redistributed into a new 96-well plate (round 2 (R2)
ligation working plate) containing a second set of well-specific barcodes, which are appended to
the first barcode on the cDNA through an in-cell ligation reaction Figure 2.3. Due to the random

redistribution of cells, each well of the second-round plate is likely to contain a mix of cells with
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different first-round barcodes, resulting in highly diverse barcode combinations. The ligation reaction
is carried out by the T4 DNA ligase, which requires double-stranded DNA. Therefore, in the second
barcoding plate, each barcode is first hybridized to a short linker oligonucleotide whose overhang is

complementary to the universal sequence at the 5’ end of the RT barcodes. Figure 2.3.

1 Note

After the ligation step, some barcodes may remain unreacted in the solution. To prevent these
free barcodes from attaching non-specifically to DNA from other cells during pooling, a blocker
strand is added. This blocker has a longer complementary region to the linker, allowing it to
displace any unreacted barcodes from the linker and thus ensures that only correctly ligated

barcodes remain attached to the cDNA. Figure 2.3

Cells are then pooled again, and a split-ligation-pool cycle is repeated for the second time. Cells are
randomly distributed into a third 96-well plate (round 3 (R3) ligation working plate), which is loaded
with barcoded oligonucleotides containing the third cell barcode annealed with a linker, a 10-base
Unique Molecular Identifier (UMI), a universal PCR handle and a 5’ biotin! molecule. The ligation

reaction is stopped by adding a second blocker strand and EDTA.

Warning

In our experiment, only 95 out of the 96 wells of the R3 plate are used to minimize potential
bias in cell distribution. This setup allows for 90 x 96 x 95 = 820,800 possible barcode

combinations, enabling the identification of up to 820,800 individual cells.

2.2.4 Sub-library and sequencing preparation

The pooled cells are washed, counted, and divided into multiple sub-libraries. A sub-library containing
approximately 3,000 cells was selected for sequencing, in order to maximize sequencing depth per
cell and minimize barcode collision rates, which is the probability that two cells receive the same

barcode combination®3.

After cell lysis and ¢cDNA purification on streptavidin beads, a second reverse transcription is performed
to improve ¢cDNA yield, during which a template switch oligo (TSO) is added to introduce a 3’ adapter.
The resulting cDNA is then amplified by PCR. Following amplification, a size selection step removes
short byproducts such as adapter or barcode dimers, ensuring that only high-quality cDNA fragments

are retained for sequencing.

IBiotin is a small vitamin molecule that binds with extremely high affinity to streptavidin. This biotin-streptavidin
interaction is used for the selective capture and purification of biotinylated cDNA molecules on streptavidin-coated beads
during the library preparation process.
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To increase index diversity necessary for the well-being of the sequencing, the final library was split
into four sub-libraries, each receiving a distinct index during adapter ligation: BC_0076 (CAGATC),
BC 0077 (ACTTGA), BC 0078 (TAGCTT), and BC_0079 (GGCTAC). These indices were used solely
to improve sequencing quality and balance on the NovaSeq platform, without introducing any

experimental or technical variation between sub-libraries.

2.2.5 Sequencing and demultiplexing sub-libraries

Sequencing was performed on a NovaSeq™ X plus instrument at GenoA platform in paired-end mode.
The library pool was loaded onto all lanes of the flowcell at a final concentration of 200 pM with
20% PhiX?2. The sequencing program consisted of 241 cycles for Read 1, 6 cycles for Index i7 and
91 cycles for Read 2. The sequencing facility performed demultiplexing of sub-libraries, resulting
in eight FASTQ files (R1 and R2 for each index). R1 files contain the cDNA sequences of interest
(transcriptome), while R2 files contain the cell barcodes (from the three split-pool rounds) and unique

molecular identifiers (UMIs).

2.3 Pipeline for microSPLIT data processing

Input Samples > Data Conversion
Seurat / AnnData
BC_0076 FASTQ BC_0077 FASTQ BC_0078 FASTQ BC_0079 FASTQ
R1 +R2 files R1 +R2 files R1 +R2 files R1 +R2 files l
Quality Control l
FastQC &
Quality Control &
l Filtering
—_—

Trimming l
Cutadapt &

Data Integration
Normalization & Batch
correction

Post-trimming J L
Single-cell Pseudobulk

;—J %
Sub/population Diffusion pseudotime,

clustering Trajectory inference
2 merged
FASTQ
L Differential Expression
STARsolo Co-expression Analysis
Alignment + Barcode Gene Ontology Analysis
Reading

Figure 2.4: Comprehensive pipeline for microSPLIT single-cell RNA-seq data processing.

2PhiX is a control library containing a known viral genome sequence that is spiked into sequencing runs to monitor
sequencing quality, calibrate base calling, and provide a reference for quality control metrics. It helps ensure accurate
sequencing performance and data quality assessment.
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The workflow encompasses the complete analytical process from raw sequencing data to biological
interpretation, including quality control and preprocessing of FASTQ files, alignment and quantification
using STARsolo, data structuring with metadata assignment, quality filtering and integration, single-cell
and pseudobulk analysis approaches, population characterization through clustering and trajectory
inference, and downstream expression analysis including differential expression, co-expression networks,

and gene ontology enrichment.

2.3.1 Preprocessing of the sequencing data

All quality control, trimming, alignment, barcode reading and generation of cell-gene count matrix
steps were performed on the GenOuest high-performance computing cluster using SLURM job scripts
and parallelization to ensure efficient and reproducible analysis of large-scale sequencing data (see

left part of Figure 2.4).

Quality control and trimming

Read quality was initially assessed for all four libraries (R1 and R2) using FastQC>* and MultiQC°.
Trimming was then performed with Cutadapt®® and Fastp®” to clean the sequencing data. For R2 files,
trimming focused on filtering for valid barcodes. For R1 files, trimming removed various artifacts:
template-switching oligo (TSO) sequences at the 5’ end, adapter sequences, and 3’ artifacts including
polyG stretches (NovaSeg-specific artifacts) and potential R1 complement sequences when cDNA was
short. Only reads with a minimum length of 25 bp were conserved. The detailed trimming pipeline is

described in Appendix Section Section A.2.

Quality control and file merging

After trimming, read quality was reassessed with FastQC>* and MultiQC>® to ensure that the remaining
reads were of high quality and suitable for downstream analysis. This step involved checking the
distribution of read lengths, GC content, duplication rates, quality scores (Q30), adapter content,
and other relevant metrics. Following quality control, the files from all four libraries (R1 and R2 for
each index) were merged into unique files (R1 and R2), ensuring that all cells from all conditions
and technical replicates were included in the analysis.

Alignment, barcode reading and generation of cell-gene count matrix

3839 "an extension of

The alignment and quantification pipeline was implemented using STARsolo
the STAR aligner specifically designed for single-cell RNA-seq data. STARsolo was chosen based
on benchmarking studies showing it offers the best combination of speed and reproducibility for
SPLiT-seq / microSPLiT data analysis*’. The implementation followed the recommendations outlined
in Gaisser et al., 2024°3 for optimal microSPLiT data processing. Complete pipeline scripts and

parameters are detailed in Appendix Section Section A.3.
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Reference genome and annotation. The reference genome of Pseudomonas brassicacearum R401:
ASM3006410v1 (GCA 030064105.1) and its annotation were downloaded from GenBank. The GFF3
annotation file was converted to GTF format using gffread (Cufflinks*' package) for compatibility

with STARsolo.

Correcting GTF file for compatibility with STAR. The conversion was verified to ensure all required
fields were present, particularly confirming that genes were labeled as ‘exon’ features rather than
‘CDS’ descriptors, and that chromosome names matched between reference sequence and annotation

files. This correction was performed to ensure proper compatibility with STARsolo.

Alignment parameters. The pipeline used optimized parameters for microSPLIiT data: minimum 50
matching bases for valid alignment and 1 mismatch tolerance for both barcode and UMI matching.
The complex barcode structure (R2) was configured with positions 0_10 0_17, 0_48 0_55, and

0_78 0_85 for the three barcoding rounds, and UMI position 0 0 0 9.

Output matrices. STARsolo generated count matrices of gene counts for each cell (N-by-K matrix,
with N cells and K genes) using GeneFul1l feature counting and UniqueAndMult-Uniform mapping
strategy (which distributes multi-mapped reads uniformly). Although bacteria lack introns, GeneFull
was chosen to include reads that may map to intergenic regions or incompletely annotated gene
boundaries, which is common in bacterial genomes. The UniqueAndMult-Uniform strategy is
particularly important for bacterial genomes due to the presence of paralogous genes, repetitive
sequences, and operon structures that can result in reads mapping to multiple genomic locations.
Raw data matrices (unfiltered barcodes) were used for downstream analysis®®, with cell filtering

applied later in the processing pipeline.

Quality control and output files. After STARsolo analysis, quality control was performed using
the Log.final.out and summary.csv files. The main output files for downstream analysis included
barcode.tsv (cell identifiers), features.tsv (gene identifiers), and UniqueAndMult-Uniform.mtx (count

matrix).

2.3.2 Single-cell data processing
All downstream analyses were performed locally using a reproducible development container envi-
ronment (Docker and Rocker Project) with Visual Studio Code dev containers to ensure consistent

software versions and analysis reproducibility, including version control for R and Python packages.

Data conversion and metadata assignment.
Raw count matrix was converted to Seurat v5 objects*? in R and AnnData objects*® for use with

Scanpy**. Two types of metadata were assigned:
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* Cell metadata based on barcode combinations, linking each cell to its experimental condition
(medium type, biological and technical replicate, timepoint, and well plate position at each
barcoding round)

* Gene metadata including sequence type and gene symbols for downstream analysis.

Quality control and filtering.
A multi-step filtering strategy was implemented to ensure data quality and remove technical artifacts
while preserving biological variation. The filtering pipeline was designed to address specific challenges

of microSPLIT data and experimental design considerations.

An initial UMI-based filtering was performed to remove cells with fewer than 100 unique molecular
identifiers (UMIs) from the analysis Figure A.1. This threshold was chosen based on preliminary
analysis showing clear differences in UMI distributions between the two culture conditions (M9 vs
MO9F), while also serving as a quality control metric to identify potentially failed technical replicates.
To identify potential doublets, the top-performing cells from each technical replicate were first filtered
based on UMI counts. Doublets are technical artifacts that occur when two or more cells are incorrectly
assigned the same barcode combination, resulting in a mixed transcriptomic profile that can confound
single-cell analysis. The distribution of UMI counts per cell was examined within these high-quality
cells to detect outliers that deviated significantly from the expected distribution, which typically
represent potential doublets or technical artifacts (visual inspection of the distribution of UMI counts
per cell). A comprehensive list of these putative doublets was compiled and subsequently removed

from the initial dataset to ensure data quality.

To ensure robust representation of each experimental condition, filtering was applied at the biological
replicate level to obtain approximately 165 cells per condition, representing a total of 3000 cells. For
each biological replicate at each optical density timepoint (T1, T2, T3) for both culture conditions
(M9, M9F), only the most deeply sequenced cells were retained. This approach allowed for the
selection of the best-performing technical replicates. Then, in each of the 18 conditions, technical
replicates containing fewer than 5 cells were removed.Transcript type filtering was applied to retain
only mRNA transcripts for analysis, filtering out ribosomal RNA (rRNA), transfer RNA (tRNA), and
other non-coding RNA species. Gene expression filtering was performed to remove genes expressed
in fewer than 5 cells across the entire dataset, eliminating low-quality or spurious gene detection

events and focusing on robustly detected transcripts.

17



Msc Bioinformatics thesis
Study of Division of Labor in Pseudomonas through single-cell RNA-seq

2.3.3 Single-cell analysis

For this first approach to single-cell RNA-seq analysis, the complete dataset with all conditions pooled
together was analyzed, rather than focusing on specific sub-conditions (Culture Medium X Biological
Replicate X Sampling Time). The primary objective was to validate that the dataset contains sufficient
signal to distinguish between culture media conditions at a global level before conducting more
detailed condition-specific analyses. While the main biological question is to investigate Division of
Labor (DoL) within the bacterial population, this approach did not directly address this question but
served as a foundation for understanding data quality and taking a broad exploratory view of the

data.

General analytical approach

The analysis workflow encompassed several key steps: Normalization and scaling, feature selec-
tion, dimensionality reduction, clustering, and differential expression analysis. We systematically
tested different parameters and methodologies to optimize each step of the pipeline. We followed
the Scanpy tutorial for the general approach and implemented the BacSC protocol (preprint*®), a
computational pipeline designed to limit methodological biases in bacterial single-cell analysis. We
tested BacSC specifically for normalization, scaling and feature selection, and its output was then

used for subsequent dimensionality reduction and clustering steps.

Normalization, scaling and feature selection. We implemented the BacSC protocol (currently
a preprint®), a fully data-driven computational pipeline based on the Python version of Seurat’s
SCTransform tool. SCTransform is an advanced normalization method that replaces the classical steps
of normalization + log-transformation + variable gene selection. It performs variance stabilizing
transformation (VST) to correct for differences in sequencing depth between cells, stabilizes variance
across genes, and automatically identifies the most informative genes for biological variation. This
automated pipeline selects optimal features for normalization and feature selection without requiring

manual intervention.

Principal component analysis (PCA). PCA was computed using sc.pp.pca, with the number
of principal components systematically tested at multiple levels (i.e. 3, 10, 20, 50) depending
on the data characteristics. The optimal number of components was determined using Scanpy’s
sc.pl.pca_variance_ratio plot, which displays the explained variance ratio for each principal
component, allowing us to identify the elbow point where additional components provide diminishing

returns in variance explanation.

Clustering and visualization. For our analysis that will be presented, we constructed the neighbor-

hood graph using the first 5 principal components (PCs) with 10 neighbors per cell, capturing local
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similarity between cells in the reduced dimensional space. This approach is essential for downstream
clustering and visualization analyses. We then applied Leiden clustering with two different resolution
parameters (0.1 and 0.25) to identify distinct cell populations. Uniform manifold approximation and
projection (UMAP) was computed using sc.tl.umap for visualization, with parameters optimized
for bacterial single-cell data. For comparison and validation purposes, we also performed the same

542

analytical workflow using Seurat v5“, which yielded similar results and performance, confirming the

robustness of our analytical approach across different computational frameworks.
Differential expression analysis

Differential gene expression analysis was performed using Scanpy’s gene ranking functions
(sc.tl.rank_genes_groups and sc.get.rank_genes_groups_df) to compare expression
patterns between experimental conditions. Statistical outputs included gene names, z-scores, log fold

changes, p-values, and adjusted p-values for robust identification of differentially expressed genes.

2.3.4 Analytical scope and limitations

As mentioned in the pipeline description (Figure 2.4), this study focuses on the fundamental analytical
steps: data quality assessment, basic clustering and visualization, and initial differential expression
analysis between culture conditions. The more advanced analytical approaches such as pseudobulk
analysis, trajectory inference, gene co-expression networks, and gene ontology enrichment were not

pursued at this exploratory stage.
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Chapter 3

Results

This chapter presents the findings of our single-cell RNA-seq analysis of P brassicacearum R401. We
first established data quality through preprocessing and quality control steps, then applied filtering

strategies to ensure reliable cell identification and gene expression quantification.

3.1 Preprocessing and Quality Control

3.1.1 Trimming and Quality Control of FASTQ Files

% Adapter
% Adapter 100
100 Hllumina Universal Adapter

flumina Universal Adapter N ’
Hllumina Small RNA 3 Adapter Hllumina Small RNA 3 Adapter
a0 Illumina Small RNA 5' Adapter 90 lllumina Small RNA 5' Adapter
Polya

PolyA
80 PolyG

a0 PolyG

70 70
60 60

50 50

0 054567801519 3034 4545 6064 7579 90.94 110114 135139 160164 185189 210214 230 © 1234567889 1519 3034 4549 6064 7579 9094 110-114 130-134 150-154 170-174 190-194
Position in read (bp) Fosition in read (bp}

(a) before trimming (b) after trimming
Figure 3.1: Artifacts content of the sublibrary BC_0076 before and after trimming with Cutadapt and
Fastp
The adapter content analysis shows the presence of various sequencing artifacts in the raw data (example
of BC _0076). Before trimming (Figure 3.1a), distinct patterns are visible: polyG stretches (pink), polyA
tails (cyan), and Illumina adapter sequences (purple). After trimming (Figure 3.1b), these artifacts are

effectively removed, resulting in clean sequence data suitable for downstream analysis.
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Table 3.1: Summary of sequence metrics before and after trimming of each sublibrary with Cutadapt
and Fastp (R1 read length metrics)

Sample Name BC_0076 BC_0077 BC 0079 BC_0080 Mean/Total

R1 length 241bp 241bp 241bp 241bp 241bp
before

trimming

R1 length 127bp 157bp 152bp 132bp 142bp
after trimming

R1 number of 631.4M 325.5M 379.1M 397.7M 1733.7M
sequences

before

trimming

R1 number of 450.8M 248.4M 285.2M 300.1M 1284.5M
sequences

after trimming

Change in -28.6% -23.7% -24.8% -24.5% -25.4%
number of

sequences

The trimming process successfully removed various sequencing artifacts and improved data quality
for downstream analysis. The preprocessing pipeline eliminated template-switching oligo (TSO)
sequences, polyG stretches (NovaSeq-specific artifacts), polyA tails, and adapter sequences from
the raw sequencing data (Figure 3.1, Table 3.1). This cleaning step was essential for accurate gene
expression quantification and reliable single-cell analysis. The trimming process resulted in an average
reduction of 25.4% in the total number of sequences across all sublibraries, from 1,733.7 million to

1,284.5 million reads (Table 3.1).
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Table 3.3: Summary of metrics obtained with STARsolo after barcode-UMI reading and alignment with
the reference genome of P brassicacearum R401

Metric Count/Percentage

Total Reads Processed 1,284,475,633

N_reads with valid barcodes 1,099,327,755 (85.58%)

- Exact Barcode Match 1,046,121,284 (81.44%)

- Single Mismatch Barcode 53,206,471 (4.14%)

Q30 Bases in RNA reads 95.79%

Q30 Bases in CB+UMI 95.51%

Unique Gene Mapping 34,593,349 (2.69%)

Unique + Multiple Gene Mapping 971,519,404 (75.64%)

Total Genes Detected 6,035 on the total of 6,249 genes
(96.57%)

Cell Barcodes Detected 699,355

N_umi 36,565,214

3.1.2 Alignment and Quantification with STARsolo
Following the successful preprocessing and trimming of our sequencing data, we performed alignment
against the reference genome of P brassicacearum R401 (Figure 3.2a). The barcode reading and

38,39

quantification by STARsolo provided comprehensive quality metrics and mapping statistics.

The STARsolo analysis demonstrated excellent barcode quality with 85.58% of reads having valid
barcodes, falling within the expected range of 70-90% for successful experiments®>. The sequencing

quality was outstanding with Q30 scores above 95% for both RNA reads and barcode/UMI sequences.

Gene mapping analysis revealed that 75.64% of reads mapped to genes, with 2.69% showing unique
mapping, which is typical for bacterial genomes with overlapping genes and repeated sequences>3.
The fraction of uniquely aligned reads falls within the expected range of 3-12% for bacterial samples>2.
A total of 6,035 genes were detected across 699,355 unique cell barcodes, representing 96.6% of the

6,249 genes annotated in the P brassicacearum R401 genome.

Genome and Transcriptome Composition

The genome and transcriptome composition analysis reveals the distribution of different RNA types
in our P brassicacearum sample (Figure 3.2). In the annotated genome of P brassicacearum R401,
we identified 6,100 mRNA genes (97.6% of total genes), 65 tRNA genes (1.1% of total genes), 16
rRNA genes (0.3%) and 68 other genes. However, in the transcriptome analysis of our 36,565,214
UMIs Table 3.3, the distribution shows a different pattern: 57.1% correspond to mRNA transcripts
(21 millions), while 28.4% are rRNA transcripts (representing approximately 10 millions UMIs),
10.2% are tRNA transcripts (representing approximately 4 millions UMIs) and 4.4% are other genes

(representing approximately 1.5 millions UMIs). This distribution concords with the well-established
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Figure 3.2: Compositional analysis of P brassicacearum R401 genome annotation and transcriptome
distribution of different RNA types

observation that rRNA and tRNA transcripts represent a large proportion of the bacterial transcriptome

despite constituting only a small fraction of the genome, due to their high transcriptional activity and
stability?’.

3.2 Cell Quality Filtering and Dataset Characterization

STARsol0%%3? detected 699,355 out of 820,800 possible barcode combinations, significantly more
than the approximately 3,000 cells targeted in our sublibrary design Table 3.3. This large discrepancy
indicates the presence of contaminating barcodes that can occur throughout the protocol, including
potential contamination in the source oligonucleotide plates. To proceed with single-cell analysis,
we needed to identify and retain only genuine cells among this large barcode population. STARsolo
employs a knee plot strategy to identify “real” cells*®. However, as recommended in the literature
(Gaisser et al. 2024°3), we chose to apply our own filtering criteria rather than using STARsolo’s
default KneePant method, which would have resulted in approximately 27,000 cells. This decision
was based on the consideration that our experimental design included cells grown under different
conditions (culture medium composition) and at different growth stages, which could result in varying
transcriptional activity levels. Therefore, applying a single threshold across all conditions might
eliminate cells with naturally lower but biologically relevant expression profiles. Instead, we chose to
apply different thresholds to retain the best cells from each biological replicate, ensuring balanced
representation across experimental conditions. This approach was validated by our initial UMI-based
filtering results Section A.4, which revealed clear differences between culture conditions with M9
medium (nutrient-limited) showing fewer retained barcodes compared to M9F (nutrient-rich) when

we used a global threshold of 100 UMIs per cell, confirming that different thresholds per samples
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were indeed necessary to capture cells from all experimental conditions.

Following the initial UMI-based filtering, additional quality control steps were applied including
doublet removal, biological replicate-based filtering, and mRNA type filtering. The final dataset
contained approximately 3,000 cells, representing the highest-quality cells selected from each bio-
logical replicate to ensure balanced representation across experimental conditions. The filtering by
biological replicate shows that some technical replicates were partially or completely eliminated to
retain only the best-performing ones. The distribution of retained cells shows approximately 160 cells
per biological replicate (Figure 3.3a). When few technical replicate categories remain for a biological
replicate, it indicates high variability between technical replicates, likely due to differential barcode
efficiency since each technical replicate possesses different barcode 1 combinations (Figure 3.3a).
Some technical replicates were more efficient than others (e.g., MOF A sampling T2 had one technical
replicate that was much more efficient than its group and therefore almost the only one for which
cells passed the filter). Following this filtering, technical replicates are no longer considered for

subsequent analyses, and we focus on the biological replicate level.

The following visualizations also show the distribution of mRNA gene expression patterns across the
filtered cell population, specifically the number of mRNA genes detected per cell and the number of

UMIs associated with mRNA genes per cell Figure 3.3b, Figure 3.3c, Figure 3.3d.

MOF medium consistently showed higher values compared to M9 (Figure 3.3d), with mean mRNA

counts of 749 for M9F versus 372 for M9, and mean gene counts of 462 for M9F versus 270 for M9.

Biological replicate variability was particularly pronounced at T1 for both conditions and at T3 for M9
conditions Figure 3.3b, Figure 3.3c. Under nutrient-limited conditions (M9), cells showed markedly
reduced transcriptional activity at T2 and T3 timepoints, with some replicates displaying very low
UMI and gene counts, suggesting either reduced cellular activity or technical challenges in recovering
stressed cells. The scatter plot (Figure 3.3d) reveals a strong positive correlation between UMI counts
and mRNA gene numbers, confirming the quality of the filtered dataset and the relationship between

sequencing depth and gene detection.

These results demonstrate that the filtering strategy effectively removed poor-quality barcodes to
retain only potential “real cells” from each biological replicate that can be analyzed for downstream

investigation.
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Figure 3.3: Metrics of filtered cells across experimental conditions (Culture Medium X Biological Replicate
X Sampling Time) in the single-cell RNA-seq experiment.
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3.3 Single-Cell Analysis and Transcriptional Heterogeneity

Following the quality filtering steps, we performed dimensionality reduction and clustering analysis
to explore transcriptional heterogeneity across cell populations and assess global differences between
culture conditions. The analysis began with data transformation using the BacSC method (see
Figure A.2b for detailed about it), followed by Principal Component Analysis (PCA) to identify the
optimal number of dimensions for downstream analysis. UMAP visualization and clustering were

then used to detect global transcriptional differences between experimental conditions.

3.3.1 Principal Component Analysis

The PCA analysis revealed a characteristic pattern of low variance explained by individual principal
components (Figure A.2b), which is typical for bacterial single-cell RNA-seq data, particularly under
stress conditions. PC1 captured approximately 0.6% of the total variance and dominated the other
components, which showed even lower contributions. This indicates that the transcriptional variability
is diffuse or weakly structured in the dataset. In this context, for the next analysis we chose to retain
the first 5 PCs for UMAP embedding to capture the few potentially meaningful signals carried by
the leading components while avoiding the integration of excessive noise. This selection provides a
balance between maintaining minimal expressiveness for dimensionality reduction and exercising

caution given the low inherent structure of the data.

PC1 successfully distinguished between the two culture conditions (M9 and M9F), revealing distinct
transcriptional patterns (Figure 3.4a). In fact, we can see that M9 T2 and M9 T3 samples (brown and
purple points in the Sampling Time facet, top right) were clearly separated from other conditions,
while M9 T1 showed no significant difference from M9F conditions. We can also observe this on the

heatmaps (Figure 3.4b).

Notably, M9 samples positioned on the left side of PC1 showed greater dispersion compared to those
on the right. Furthermore, PC1 axis alignment followed a gradient of total mRNA concentration per
cell, suggesting that this component primarily captures differences in overall transcriptional activity

between conditions.

Gene Contribution Analysis to PC1
The heatmap analysis with z-score scaling (ranging from 0 to 1) revealed the genes contributing most
significantly to PC1 variance (Figure 3.4b). Each row represents a gene and each column represents

a cell, with the legend at the bottom corresponding to biological replicates.

The genes contributing most to PC1 variance were primarily associated with translational regulation

and iron metabolism, reflecting the stress response to iron limitation in M9 medium. Among the
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(a) Unsupervised PCA projection highlighting transcriptional heterogeneity across experimental conditions. Cells
are colored by culture medium, biological replicate (grouped or not) at specific timepoint, and total mRNA
contents. (i.e. nomenclature: MOF A _T1 corresponds to biological replicate A of M9F at sampling time 1)
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(b) Heatmap of the top contributing genes (top 20) to the first principal components (PC1), based on scaled
expression values (z-score per gene). Rows represent genes, columns represent single cells collected at each
timepoints for all biological replicates. The legend at the right side of the heatmap shows the full name of the
genes.

Figure 3.4: Principal Component Analysis (PCA) results showing transcriptional heterogeneity and gene
contribution patterns in P brassicacearum populations

translational regulators, we identified rpsA (30S ribosomal protein S1), raiA (ribosome-associated
translation inhibitor), and htpG (HSP90 protein chaperone). HtpG, as a molecular chaperone, plays
an indirect but essential role in the biosynthesis and functionality of siderophores. For example, HtpG
facilitates the correct folding and stability of enzymes involved in siderophore synthesis, such as those
participating in yersiniabactine production in Yersinia species*’ .Notably, porphobilinogen synthase

was also identified among the top 20 genes contributing to PC1 variance. This finding is particularly
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relevant given our experimental design using iron-limited M9 medium. In bacteria, the link between
porphobilinogen (PBG) and iron is essential for heme synthesis, a cofactor indispensable for many
proteins involved in metabolism, cellular respiration, and electron transport. The biosynthesis of
heme in bacteria follows a pathway similar to eukaryotes, with PBG being a key intermediate formed
by the condensation of two delta-aminolevulinic acid (ALA) molecules, catalyzed by porphobilinogen
synthase. This process is regulated by iron availability in bacterial cells. The differential expression of
porphobilinogen synthase between M9 and M9F conditions thus reflects the cellular adaptation to iron
stress*®. The analysis also identified TonB-dependent siderophore receptors, which are essential for
high-affinity iron acquisition in gram-negative bacteria*>>°. These outer membrane-localized proteins
bind iron chelates at the cell surface and promote their uptake. Together with porphobilinogen
synthase, these genes form a coherent transcriptional response to iron limitation, explaining the clear

separation of M9 conditions along PC1.

While PC1 primarily captured differences in transcriptional activity and stress response, PC2 revealed
distinct patterns related to cellular motility and chemotaxis (Figure A.2d). For example, methyl-
accepting chemotaxis proteins (MCPs) and flagellin genes were identified as major contributors to

PC2 variance, suggesting a role in chemotaxis and motility responses to environmental conditions."

3.3.2 UMAP Visualization and Clustering Analysis
Following the PCA analysis, we performed UMAP visualization and clustering analysis to explore
transcriptional heterogeneity across cell populations and assess global differences between culture

conditions.

The clustering analysis with resolution 0.1 identified two main clusters, while resolution 0.25 revealed
three clusters (Figure 3.5b). Both clustering approaches successfully separated the experimental
conditions, with M9 T2 and M9 T3 samples clearly distinguished from other conditions. This separation
aligns with the PCA results, confirming the distinct transcriptional profiles of cells under iron-limited

conditions at later timepoints.

Differential Expression Analysis Between Clusters

To characterize the transcriptional differences between the identified clusters, we performed differen-
tial expression analysis between the two clusters obtained with resolution 0.1. We used the Wilcoxon
rank-sum test with FDR correction (p < 0.05) to identify significantly differentially expressed genes.

The complete results of this analysis are presented in the appendix (Figure A.3a).

Group 1 (primarily M9 T2 and T3 cells) exhibited globally lower expression levels compared to

lChemotaxis is a biological process by which cells move in response to chemical gradients in their environment, enabling
navigation toward favorable conditions and away from unfavorable ones.
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Group O (primarily M9F and M9 T1 cells), which showed a more heterogeneous expression gradient
(Figure 3.5b). This pattern reflects the reduced transcriptional activity observed in cells under iron

stress conditions.

Characterization of Differentially Expressed Genes

Among the significantly differentially expressed genes, we identified three representative examples
that illustrate the distinct transcriptional programs between clusters. The RplA gene that codes for
ribosomal protein RplA (30S ribosomal protein L1) showed lower expression in M9 T2 and T3 cells
compared to M9F and M9 T1 cells. RplA is constitutively expressed as it is essential for protein
synthesis, with expression levels reflecting the cell’s translational activity. Higher expression typically
indicates active protein synthesis during rapid growth, while lower expression suggests reduced
translational activity under stress conditions. The QLH64-28090 (phasin) gene showed an opposite
pattern, with higher expression in M9 T2 and T3 cells. Phasins are multifunctional proteins associated
with polyhydroxyalkanoate (PHA) granules that play crucial roles in stress response and energy
metabolism®!. They form an interface between the hydrophobic PHA granules and the hydrophilic
cytoplasm, regulating both PHA accumulation and utilization. Under stress conditions, phasins
can activate PHA depolymerization to release energy metabolites, increase PHA synthase activity
. Additionally, some phasins exhibit chaperone-like properties, protecting cellular proteins against
stress-induced denaturation and oxidative damage. The Flagellin gene, which is a housekeeping
gene, was the most highly expressed gene in the raw data matrix, also showed differential expression

between clusters, with higher expression in M9 T2 and T3 cells compared to M9F and M9 T1.

Global Expression Patterns and Cluster Heterogeneity

However, the analysis revealed significant heterogeneity within each cluster, with groups of cells
showing distinct expression patterns for specific genes compared to the global cluster average.
This heterogeneity is particularly evident in the violin plots presented in the appendix Figure A.3c,
which show variable distributions of gene expression within clusters. In the heatmap Figure A.3b
representing top significant differentially expressed genes, we can see that some genes are expressed at
very high levels, particularly among the significant genes for cluster 1. This observation could suggest
the presence of specialized subpopulations within the broader transcriptional groups, potentially

indicating fine-grained division of labor mechanisms at the cellular level.
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(a) UMAP visualization of the single-cell RNA-seq data, colored by culture medium, biological replicate (grouped or
not) at specific timepoint, and total mRNA contents. Leiden clustering with a resolution of 0.1 and 0.25 are

represented in two bottoms graphs.
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(b) UMAP visualization colored by expression of examples top differentially expressed genes (FDR < 0.05) between
clusters: RplA (30S ribosomal protein L1), QLH64-28090 (phasin), and flagellin. Color intensity indicates
relative expression levels (yellow: high expression, blue: low expression).

Figure 3.5: Single-cell RNA-seq analysis results showing gene expression patterns and cellular hetero-
geneity in P brassicacearum populations
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Chapter 4

Discussion

This study aimed to validate the microSPLiT technology for exploring division of labor (DOL) within
bacterial populations, specifically Pseudomonas brassicacearum R401. While a comprehensive DOL
analysis remains to be conducted, our work has successfully established a robust analysis pipeline and

generated promising initial data that provide valuable insights into bacterial single-cell transcriptomics.

4.1 Technical Validation of microSPLIT Methodology

The microSPLiT methodology performed as anticipated, with sequencing and trimming steps effectively
removing adapters and yielding high-quality reads suitable for alignment to the PsR401 genome using
STARsolo. The successful implementation of this technology represents a significant step forward in
bacterial single-cell analysis, particularly given the technical challenges associated with prokaryotic

systems compared to eukaryotic counterparts®’.

While the current pipeline achieved good results (Figure 3.1 Table 3.1 Table 3.3), there are oppor-
tunities to further optimize read recovery. STARsolo’s reliance on fixed barcode positions could be
complemented by implementing BarQC>2, which would enable recovery of shifted barcodes utilizing
CIGAR motif analysis and thus increase the overall yield of usable reads. BarQC would also provide
visual representations of read proportions in each well at every barcoding round, facilitating the

assessment of potential biases in cell distribution or barcoding efficiency.

Furthermore, implementing comprehensive quality control measures, including contamination screen-
ing tools such as FastQ Screen®®, Centrifuge®* or Recentrifuge®®, would improve data reliability and

ensure the absence of cross-contamination between samples.
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The presence of a significant proportion of ribosomal RNA reads (~28%) Figure 3.2b was expected
but highlights an opportunity for optimization?”. Implementing upstream rRNA depletion could
substantially increase mRNA yield, thereby enhancing the biological signal available for transcriptomic
analysis. Additionally, the recent availability of an updated genome annotation presents an opportunity

to improve the accuracy of gene quantification in future analyses.

4.2 Transcriptomic Responses to Iron Limitation

Our analysis revealed clear transcriptomic distinctions between experimental conditions, with cells
grown in iron-limited medium at timepoints 2 and 3 showing fewer detected genes and lower total UMI
counts compared to iron-rich conditions Figure 3.3. This observation necessitated the adaptation of
filtering thresholds per condition to maintain comparable cell distributions across samples, ultimately

retaining 160 cells per condition for a total of 3,000 cells.

The PCA and UMAP analyses demonstrated that, despite the first principal component explaining
only a small fraction of variance (~0.6%), typical for bacterial scRNA-seq datasets, it effectively
distinguished between M9 (iron-poor) and M9F (iron-rich) conditions Figure 3.4 Figure 3.4b. The
distinct transcriptomic profiles observed in cells from M9 T2 and T3 compared to M9 T1 or M9F
support the hypothesis that T1 cells in depleted medium had not yet exhausted residual iron resources.
This interpretation is corroborated by optical density measurements, which plateaued at T2 and T3,

indicating growth limitation.

4.2.1 Gene Expression Patterns Under Iron Stress

Analysis of the most contributive genes Figure 3.4b to condition separation revealed an enrichment of
genes related to translation machinery, protein chaperones, siderophore biosynthesis regulators, and
iron acquisition receptors. This pattern indicates an adaptive metabolic reorganization under iron
stress, consistent with previous studies demonstrating that iron limitation triggers comprehensive

cellular reprogramming in bacteria®.

Differential expression analysis confirmed the downregulation of ribosomal protein genes, including
RplA, under iron stress conditions, alongside the relative upregulation of genes involved in storage
metabolism and stress response mechanisms. This transcriptional shift reflects the cellular transition
from active growth to survival-oriented metabolism, characterized by reduced protein synthesis and
enhanced stress protection mechanisms. Such responses align with established paradigms of bacterial

stress adaptation, where resource limitation drives cells toward quiescence and dormancy states>®.
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The coarse-grained clustering approach employed in this study, while revealing global transcriptional
differences between major experimental groups, may mask important biological heterogeneity that
could indicate DOL mechanisms. To address our original biological question about cellular specializa-
tion within bacterial populations, future analyses must examine finer-scale heterogeneity by analyzing
individual culture conditions and biological replicates at each timepoint. This approach would be
necessary to identify potential subpopulations that might reveal specialized cellular functions and

DOL patterns within P brassicacearum populations.

4.3 Methodological Considerations and Limitations

4.3.1 Cell Quality Assessment Challenges

The estimation of unique cell numbers through barcode analysis presents ongoing challenges, as the
distinction between genuine single cells and cell aggregates or artifacts remains difficult to establish
definitively. The subjective nature of filtering methods compounds this issue, as cells deemed “low
quality” in non-stressed conditions might represent biologically relevant states, such as dormant or

stress-adapted phenotypes that could contribute to population-level DOL.

4.3.2 Dataset Scale and Computational Considerations

Compared to eukaryotic single-cell studies that routinely analyze hundreds of thousands to millions of
cells, our prokaryotic dataset appears modest with 3,000 cells analyzed. However, the smaller genome
size of bacteria offers advantages for local computational analysis and may provide pedagogical value
for method development and training purposes. The manageable dataset size facilitates thorough
exploration of analytical approaches and parameter optimization, which is particularly valuable for

emerging technologies like bacterial single-cell RNA sequencing.

4.4 Future Directions and Recommendations

Several technological and methodological improvements could enhance future investigations of
bacterial DOL using single-cell approaches. If the experiment were to be repeated, it would be
beneficial to include bulk RNA-seq and blank samples to improve statistical power and provide

additional validation of single-cell results®’.

The complete testing of the bacSC pipeline*> would also be valuable, as this specialized tool for bacte-
rial single-cell analysis may provide improved clustering specifically tailored for prokaryotic systems.
Future analyses should focus on performing DOL analysis by studying each sample independently,

allowing for the identification of condition-specific cellular states and specialized subpopulations.
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Subsequently, comprehensive analyses including Gene Ontology enrichment, cell trajectory inference,
metabolomic pathway analysis, and pseudobulk analysis would provide deeper insights into bacterial
population dynamics and the molecular mechanisms underlying potential DOL phenomena. These
approaches would enable a more complete understanding of how bacterial populations coordinate
responses to environmental stress and whether specialized cellular roles emerge under challenging

conditions.

In conclusion, while this study has successfully established the technical foundation for bacterial single-
cell transcriptomics using microSPLiT, the full exploration of division of labor in P brassicacearum
populations remains an exciting avenue for future research. The methodological advances and initial
findings presented here provide a solid basis for more detailed investigations of bacterial population

heterogeneity and specialization.
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Appendix A

Appendix

A.1 Media composition

The following table details the composition of the culture media used in this study.

Table A.1: Media composition for bacterial culture experiments

Component MOF (mL) M9 (mL)

Base M9 125 125
Glucose 1M 2.5 0.25
MgS04 1M 0.25 0.25
CaCl2 1M 0.0125 0.0125

FeCl3 100mM 0.1277 0
Vf (mL) 127.7625 125.5125

The M9 medium represents low nutrient conditions with minimal glucose and iron concentrations,

while M9F medium provides high nutrient availability with elevated glucose and iron levels.
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A.2 Trimming pipeline steps

The following steps were performed sequentially for read trimming, as implemented in the cus-
tom pipeline (see process_sample.sh). Each step is performed in paired-end mode to maintain

synchronization between R1 and R2 files.

1. TSO trimming (Cutadapt):
Removal of template-switching oligo (TSO) sequences from R1 using Cutadapt. This step

targets TSO sequences at the 5’ end of cDNA reads to eliminate technical artifacts.

cutadapt -j ${SLURM_CPUS_PER_TASK} \

-g "AAGCAGTGGTATCAACGCAGAGTGAATGGG; min_overlap=6; max_errors=0.2" \

—-g "CAGAGTGAATGGG; min_overlap=6; max_errors=0.2" \

-—pair-filter=both \

-m 20: \

-—too-short-output

o "S{output_dir}/${sample_name}_R1_too_short.fastqg.gz" \

-—too-short-paired-output
"${output_dir}/${sample_name}_R2_too_short.fastq.gz" \

-0 "${rl_output}" \

-p "${r2_output}" \

"${ri_input}" "${r2_input}" \

--report=full \

--json "${output_dir}/${sample_name}_stats.json"

2. Initial quality and adapter trimming (Fastp):
Removal of low-quality bases, polyG/polyX tails, and adapter sequences using Fastp. This step

also removes the TruSeq Read 2 adapter and 17 adapter at the end of R1 if present.

fastp \
=i "${rl_input}" \
-I "${r2_input}" \
-0 "${rl_output}" \
-0 "${r2_output}" \
——html "${output_dir}/${sample_name}_report.html" \

--json "${output_dir}/${sample_name}_report.json" \
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--report_title "microSplit Initial Fastp Report - ${sample_name}" \
-—compression 4 \

--verbose \

-—unpairedl "${unpairedl}" \

——unpaired2 "${unpaired2}" \

--length_required 91 \

-—dont_overwrite \

-—trim_frontl 0 \

-—trim_front2 0 \

-—trim_taill 0 \

-—trim_tail2 0 \

-—trim_poly_g \

--poly_g_min_len 10 \

—-—trim_poly_x \

—--poly_x_min_len 12 \

-—detect_adapter_for_pe \
-—adapter_sequence=ATCTCGTATGCCGTCTTCTGCTTGA \

-—adapter_sequence=AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC

3. PolyA trimming (Cutadapt):
Removal of polyA stretches (>=12 nt) and all downstream sequences from R1 using Cutadapt,
targeting polyA sequences introduced during library preparation. This step cleans reads with
short cDNA that extend into the R2 complementary region, using polyA as a repeat sequence

(read_polyA from the library).

cutadapt -j ${SLURM_CPUS_PER_TASK} \

-a "A{12}; min_overlap=12; max_errors=0.2" \

--pair-filter=both \

-m 20: \

-—too-short-output

o "${output_dir}/${sample_name}_R1_too_short.fastqg.gz" \

--too-short-paired-output
"${output_dir}/${sample_name}_R2_too_short.fastq.gz" \

-0 "${rl_output}" \
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-p "${r2_output}" \
"${ri_dinput}" "${r2_input}" \
--report=full \

--json "${output_dir}/${sample_name}_stats.json"

This step trims polyA15 and longer stretches that may remain after the previous steps.

4. Specific adapter trimming (Cutadapt):
Removal of the specific adapter sequence CCACAGTCTCAAGCAC from R1 using Cutadapt
(corresponds to the round 2 linker sequence). This step uses the round 2 linker barcode as a
reference point and eliminates everything behind it, particularly useful for cleaning random

hexamer sequences with short cDNA that extend into R2 complementary sequences.

cutadapt -j ${SLURM_CPUS_PER_TASK} \

—a "CCACAGTCTCAAGCAC; min_overlap=6; max_errors=0.1" \

—--pair-filter=both \

-m 20: \

-—too-short-output

o "$S{output_dir}/${sample_name}_R1_too_short.fastqg.gz" \

--too-short-paired-output
"${output_dir}/${sample_name}_R2_too_short.fastq.gz" \

-0 "${rl_output}" \

-p "${r2_output}" \

"${ri1_input}" "${r2_input}" \

--report=full \

--json "${output_dir}/${sample_name}_stats.json"

5. Linker and additional adapter trimming (Cutadapt):
Removal of linker and additional adapter sequences from R1 using Cutadapt, to further clean the
reads. This includes TruSeq Read 2 adapter (AGATCGGAAGAGCACACGTCTGAACTCCAGTCA),
Round 3 linker (AGTCGTACGCCGATGCGAAACATCGGCCACQC), and Round 2 linker (CCACAGTCT-
CAAGCACGTGGAT).
This step ensures that any remaining linker or adapter sequences are removed for certain

libraries.
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cutadapt -j ${SLURM_CPUS_PER_TASK} \

—a "CCACAGTCTCAAGCACGTGGAT; min_overlap=6; max_errors=0.2" \

-a "AGTCGTACGCCGATGCGAAACATCGGCCAC; min_overlap=6; max_errors=0.2" \

-a "AGATCGGAAGAGCACACGTCTGAACTCCAGTCA; min_overlap=6;

< max_errors=0.2" \

--pair-filter=both \

-m 20: \

--too-short-output
"${output_dir}/${sample_name}_R1_too_short.fastqg.gz" \

--too-short-paired-output

o "${output_dir}/${sample_name}_R2_too_short.fastq.gz" \

-0 "${rl_output}" \

-p "${r2_output}" \

"${ri_input}" "${r2_input}" \

--report=full \

--json "${output_dir}/${sample_name}_stats.json"

6. Final quality and length filtering (Fastp):
Final trimming with Fastp, including additional adapter removal, trimming of fixed bases from
the 5’ and 3’ ends, and filtering for minimum read length to ensure high-quality output for
downstream analysis.
This step trims R1 at both 5’ and 3’ ends to keep only cDNA and ensure clean sequences for

downstream analysis.

fastp \
=i "${rl_input}" \
=TI "${r2_input}" \
-0 "${rl_output}" \
-0 "${r2_output}" \
——trim_frontl 10 \
-—trim_front2 0 \
-——trim_taill 16 \
-—trim_tail2 0 \

--length_required 25 \
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--detect_adapter_for_pe \
--adapter_sequence=AAGCAGTGGTATCAACGCAGAGTGAATGGG \
-—adapter_sequence=CCACAGTCTCAAGCACGTGGAT \
--adapter_sequence=AGTCGTACGCCGATGCGAAACATCGGCCAC \
-—adapter_sequence=AGATCGGAAGAGCACACGTCTGAACTCCAGTCA \

-—html "${output_dir}/${sample_name}_report.html" \

--json "${output_dir}/${sample_name}_report.json'" \
--report_title "microSplit Final Fastp Report - S${sample_name}" \
—-—compression 4 \

--verbose
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A.3 STARsolo supplementary information

A3.1 Computing environment

The STARsolo analysis was performed on the GenOuest high-performance computing cluster using the
following specifications: - Node type: bigmem (high-memory node) - Memory allocation: 500GB
RAM - CPU threads: 64 parallel threads

A.3.2 STARsolo Command Line

STAR \

-—runThreadN 64 \

--genomeDir /path/to/genome_index \
--readFilesIn \
/path/to/input/merged_trimmed-R1.fastq.gz \
/path/to/input/merged_trimmed-R2.fastq.gz \
--readFilesCommand gunzip -c \
--outFileNamePrefix /path/to/output/starsolo_output/ \
--outSAMtype BAM Unsorted \
-—-outFilterScoreMinOverLread 0 \
--outFilterMatchNmin 50 \
-—-outFilterMatchNminOverlLread 0 \
--alignSJoverhangMin 1000 \
--alignSJDBoverhangMin 1000 \

--soloType CB_UMI_Complex \
--soloCBwhitelist \
/path/to/barcodes/barcode_round3.txt \
/path/to/barcodes/barcode_round2.txt \
/path/to/barcodes/barcode_roundl.txt \
--soloFeatures Gene GeneFull \
--soloUMIdedup 1IMM_AT1Tl \
--soloCBmatchWLtype 1MM \

--soloCBposition 0_10_0_17 0_48_0_55 0_78_0_85 \
--soloUMIposition 0_0_0_9 \

--soloMultiMappers Uniform

46



Msc Bioinformatics thesis
Study of Division of Labor in Pseudomonas through single-cell RNA-seq

A.3.3 STARsolo Parameters Explanation

This section details the key parameters used in our STARsolo analysis and their significance:

General STAR Parameters
* ——runThreadN 64 : Use of 64 threads for parallel alignment
* ——genomeDir : Path to the reference genome index
* —--readFilesIn: Input FASTQ files (R1 and R2)
* --readFilesCommand gunzip -c: Command to decompress FASTQ.gz files
* ——outFileNamePrefix : Prefix for output files

* —-outSAMtype BAM Unsorted : Unsorted BAM output format

Filtering Parameters
e ——outFilterScoreMinOverLread 0 : Minimum filtering score relative to read length
* ——outFilterMatchNmin 50 : Minimum number of matching bases for a valid alignment
* ——outFilterMatchNminOverLread 0 : Minimum match ratio relative to read length
* --alignSJoverhangMin 1000 and --alignSJDBoverhangMin 1000 : Maximum values

for splice junction detection (set to maximum since bacterial genomes lack splicing)

STARsolo-specific Parameters
* --soloType CB_UMI_Complex : Analysis type for cell barcodes (CB) and complex UMIs
* —-soloCBwhitelist : List of valid cell barcodes for the three barcoding rounds
* —-soloFeatures Gene GeneFull: Analysis of features at both gene and full transcript levels
* --soloUMIdedup 1MM_A11l: UMI deduplication with one mutation tolerance
* —-soloCBmatchWLtype 1MM : Cell barcode matching with one mutation tolerance
* —-soloCBposition : Cell barcode positions in reads (3 rounds)
- Round 1: 0_10 0 17
- Round 2: 0 48 0 55
- Round 3: 0_78 0 85
* --soloUMIposition 0_0_0_9 : UMI position in reads

* —-soloMultiMappers Uniform : Uniform distribution of multi-mapped reads

These parameters were chosen to optimize single-cell detection while maintaining high alignment

quality and accounting for the complexity of our three-round barcoding protocol.

Each step is performed in paired-end mode to ensure synchronization between R1 and R2 files. See

the pipeline script for implementation details.
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A.4 Initial filtering with minimum 100 UMI per cell

The first step involved filtering cells based on unique molecular identifier (UMI) counts with a

minimum of 100 UMIs per cell.

Number of Barcodes per Culture Medium: Not Filtered vs Filtered (n_counts > 100)
Comparison of Cell Quality Metrics: M9 vs MOF (Filtered: n_counts = 100)
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Figure A.1: Filtering of low-quality cell barcodes with fewer than 100 UMIs per cell across all biological
replicates in the single-cell RNA-seq experiment.

The initial filtering step removed cell barcodes with fewer than 100 UMIs to eliminate artifacts. This
threshold was chosen to remove very low-quality barcodes and to demonstrate clear differences in UMI
distributions between the two culture conditions (M9 vs M9F), with M9 losing more BCs at this threshold,
while also serving as a quality control metric to identify potentially failed technical replicates. The
filtering revealed significant heterogeneity between conditions, with M9 medium showing fewer retained
barcodes compared to MOE This difference could reflect lower transcriptional activity under nutrient-
limited conditions, but may also be related to other factors such as cell wall modifications affecting
permeabilization efficiency, or increased cell death leading to differential recovery during washing steps.
Additionally, technical replicates showed varying sensitivity to filtering, indicating heterogeneity in the
ability to recover reads across different experimental batches. Notably, one technical replicate (replicate 3
of M9 _C at T3) appeared to have failed, likely due to a pipetting error, and was consequently eliminated

by this threshold.
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A.5 PCA analysis Supplementary Figures
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(d) Heatmap of the top contributing genes (top 20) to the first principal components (PC2), based on scaled
expression values (z-score per gene). Rows represent genes, columns represent single cells collected at each
timepoints for all biological replicates. The legend at the right side of the heatmap shows the full name of the
genes.

Figure A.2: Supplementary figures for the PCA analysis

The PCA analysis supplementary figures provide detailed insights into the dimensionality reduction process.
The scaling transformation (Figure A.2a) shows data normalization using scTransform from the BacSC
pipeline. The elbow plot (Figure A.2b) demonstrates the optimal number of principal components selection

based on explained variance. The PC comparison (Figure A.2c) evaluates different principal component
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combinations for group separation. The heatmap (Figure A.2d) identifies the top contributing genes to

PC2, revealing key transcriptional drivers of the observed separation between experimental conditions.

A.6 UMAP Analysis Supplementary Figures

(a) Table showing the top 50 most significant genes among differentially expressed genes between the two clusters
identified by Leiden clustering, with gene names and significance thresholds (p-value adj) after FDR correction

eeeeee opt

(b) Heatmap with z-score scaling (ranging from 0 to 1) of
the top 50 most significant genes among differentially
expressed genes between the two clusters identified
by Leiden clustering. Rows represent genes, columns
represent single cells of both leiden clusters

() Violin plots showing five differentially expressed

genes (rplA (30S ribosomal protein L1), ppsA,
QLH64 28090 (phasin), rpoC, QLH64_04320 (flag-
ellin)) between the two clusters identified by Leiden
clustering

Figure A.3: Supplementary figures from UMAP clustering analysis revealing transcriptional heterogeneity
in P brassicacearum populations under iron stress.

Differential expression analysis identified significantly differentially expressed genes (Wilcoxon test with

FDR correction, p < 0.05) between the two main clusters identified using Leiden clustering with resolution

0.1. The heatmap (Figure A.3b) shows expression patterns of the top 50 most significant genes, while

violin plots (Figure A.3c¢) illustrate the distribution of five representative genes, revealing that despite

statistical significance, considerable variability exists within clusters, which may suggest specialized

cellular functions or heterogeneous physiological states.
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